Ncnn 实现 Onnx Argmax 算子

本文介绍了ncnn不完全支持ONNX算子的情况,特别是argmax算子不在ncnn的内置支持之列。接着,文章详细讲解如何利用ncnn::Mat实现ONNX的argmax函数,特别指出当前实现仅适用于batch_size为1的情况,若需扩展到其他batch大小,需要额外增加循环处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 ncnn 支持的 onnx 算子

ncnn 并不能支持所有的onnx算,从 onnx2ncnn.cpp 源码中找出了其支持的 onnx 算子:

Constant,Dropout,BatchNormalization,BiasGelu,Clip,Conv,ConvTranspose,EmbedLayerNormalization,Gemm,GroupNorm,GRU,InstanceNormalization,LayerNorm,LSTM,MatMul,MultiHeadAttention,Pad,PRelu,Reshape,Resize,RNNSkipLayerNormalization,Slice,Upsample,adaptive_avg_pool2d,adaptive_max_pool2d,AveragePool,MaxPool .............

太多了,这里就不意义列举了。可以看到不支持 argmax 算子,当然不支持的算子还有很多,这里只谈论一种,后续不断的增加。

2、实现argmax函数

这里使用 ncnn::Mat 实现了 onnx 的 argmax 函数,其中要求 batch_size 为1,如果需要支持不为1的情况请自行修改代码,也就是在通道的 for 循环外再增加一个 batch 的循环,因为这里固定了只读取第0个 batch 的数据,通过遍历对比,得到每一个通道的最大值记录在maxVal中。

// batch = 1
void OnnxArgmax2Ncnn(const ncnn::Mat &cnMat, std::vector<float> argMax_data_, std::vector<float> argMax_idx_)
{
    struct timeval start, end;
    float time_use;
    float tempMax;
    int tempIndex;
    std::cout << cnMat.c << cnMat.h <<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值