kaka_R-Py
你们的小小关注是我创作的动力。--“烦躁的时候千万不要说话,也不要做任何决定,安静的待会,你已经长大了,一些难过的情绪要学会自己消化”。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
关联度分析、灰色预测GM(1,1)、GM(1,1)残差模型——基于Python实现
关联度分析、灰色预测GM(1,1)、GM(1,1)残差模型——基于Python实现原创 2024-11-20 22:39:30 · 475 阅读 · 0 评论 -
景气预测法——基于Python实现
提供的代码实现了使用景气预测法进行经济预测。原创 2024-11-13 12:31:40 · 146 阅读 · 0 评论 -
矩阵的各种计算:乘法、逆矩阵、转置、行列式等——基于Excel实现
在Excel中,可以使用内置的函数和公式来实现矩阵的各种计算。这些方法可以帮助你在Excel中进行矩阵的各种操作。请注意,数组公式需要使用。原创 2024-11-13 12:17:56 · 1591 阅读 · 0 评论 -
如何区分时间序列的pacf与acf的拖尾性与截尾性
时间序列分析技巧分享2024年5月11日介绍了如何通过ACF和PACF图来判断ARMA模型的阶数技术分享拖尾性和截尾性的解释2021年6月19日解释了拖尾性和截尾性在时间序列分析中的重要性教育信息ARIMA-RF组合模型在动力煤价格预测中的应用未明确,但数据覆盖至2022年4月1日采用ARIMA-RF组合模型对秦皇岛动力煤价格进行预测,并通过平稳性分析和参数确定构建有效模型实际应用案例四、参考文献。原创 2024-11-08 08:01:39 · 3173 阅读 · 0 评论 -
ARIMA时间序列可视化预测——基于AirPassengers数据集
AirPassengers数据集记录了1949年至1960年间美国月度国际航空乘客人数,为我们提供了一个研究历史趋势和预测未来变化的宝贵资源。该数据集通常以CSV文件格式存储,包含两列数据:月份(Month)和乘客人数(Passengers)。月份列从1949年1月到1960年12月,涵盖12年的完整周期,每个月都有一条记录。乘客人数列则给出了对应月份的乘客总量,反映了航空交通的发展情况。原创 2024-10-27 17:53:16 · 455 阅读 · 0 评论 -
自适应过滤法—初级
【代码】自适应过滤法—初级。原创 2024-10-16 16:04:50 · 580 阅读 · 0 评论 -
第三章-回归预测法:一元线性回归和多元线性回归分析-带例题(Python&Excel)
第三章-回归预测法-一元线性回归和多元线性回归分析-带例题。付款时间与所购商品价值之间存在显著的相关关系,由图 1 看出付款时间与所购商品价值之间呈现明显的线性关系,即付款时间与所购商品价值之间为正相关。截距的t检验P值为0.157,在显著性水平为0.99情况下,不拒绝原假设,说明。:通过Python计算得出付款时间为3分钟时,所购商品的置信度为99%的。付款时间与所购商品价值之间是否存在显著的相关关系。原创 2024-09-25 22:23:40 · 1514 阅读 · 0 评论 -
趋势外推法
趋势外推法主要利用图形识别法和差分法计算,进行模型的基本选择。原创 2024-09-28 00:17:28 · 332 阅读 · 0 评论 -
第四章-课后练习5:修正指数曲线模型--Python实现(1)
在统计预测与决策中,学习了时间序列的趋势外推法,其中修正指数曲线模型的用处广泛。原创 2024-09-25 21:49:19 · 334 阅读 · 0 评论 -
第四章-课后练习5:修正指数曲线模型——excel和python应用(2)
统计预测与决策:修正指数曲线模型——excel和python应用,第四章P112-5题综合应用。原创 2024-09-28 11:17:37 · 671 阅读 · 0 评论 -
第四章 -课后练习7[一元多项式回归拟合]一元线性回归 EXCEl实验与Python结合实现
统计决策与预测 一元线性回归 EXCEl实验与Python结合实现,第四章,趋势外推法预测问题。原创 2024-09-28 12:52:59 · 419 阅读 · 0 评论 -
第四章(实验)Python实现:时间序列趋势外推法应用-龚珀兹曲线拟合
时间序列趋势外推法应用-龚珀兹曲线拟合,下表数据为某跨国公司1989-2021年的年销售量数据,使用适合的模型预测该公司2022年的销售额,并得出理由。原创 2024-09-26 23:28:42 · 488 阅读 · 0 评论