自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 支持向量机学习总结:理论与实践的融合思考

经过系统学习,我对支持向量机(SVM)的核心思想与实现细节形成了结构化认知。

2025-03-28 19:43:38 269

原创 西瓜书+南瓜书第4章深度总结与心得(决策树篇)

啃完西瓜书第4章和南瓜书的补充推导,对决策树的理解从“会用”升级到了“懂原理”。相比神经网络这种“黑箱”,决策树更像一个逻辑清晰的流程图,但背后的数学细节和实际应用中的坑一点也不少。比如某个特征10%的值缺失,计算信息增益时,这10%的数据按已有数据的分布分配到子节点。信息增益会偏向取值多的特征(比如“学号”这种没意义的特征),增益率除以特征的“固有值”来平衡。:信息论(熵)和概率论(基尼)是决策树的数学基础,剪枝的本质是正则化。:能直接画出规则,适合需要解释的场景(比如银行拒绝贷款的理由)。

2025-03-27 09:48:30 243

原创 深度学习神经网络:从数学本质到认知重构的再思考

回顾此次学习,我深刻意识到:神经网络不仅是工程工具,更是理解智能本质的罗塞塔石碑。西瓜书勾勒出基础框架,南瓜书补全数学细节,但真正深邃的洞见来自跨学科的思辨。

2025-03-27 09:43:53 605

原创 线性判别分析:从数学本质到认知升维

通过对LDA的深度学习,我们不仅掌握了一个经典的分类算法,更重要的是建立了从数学推导到算法实现,从理论分析到实践优化的完整认知链条。这种多维度的思考训练,正是机器学习研究者需要具备的核心素养。在后续学习中,建议结合流形学习理论,探索LDA在非线性空间的扩展,这将打开一个更广阔的认知维度。

2025-03-22 23:24:40 1603

原创 深度学习心得:西瓜书+南瓜书第3章——对数几率回归

当线性回归遇上sigmoid函数,一场精妙的数学舞蹈就此展开。梯度形式∇J = X^T(y_pred - y_true) 的直观解释。特征分箱:最优分箱数≈sqrt(n_features)导数σ' = σ(1-σ)的美丽性质,为梯度计算铺路。推荐系统:Precision@K + NDCG。损失函数本质是预测分布与真实分布的KL散度。缺失值处理:-999填充比均值填充更有效。核技巧:通过核函数隐式映射到高维空间。二分类问题:C∈[0.1, 1]层级堆叠:作为神经网络的基础单元。多分类问题:C∈[1, 10]

2025-03-18 09:48:43 410

原创 深度学习总结:西瓜书+南瓜书第3章——线性回归

南瓜书详细补充了矩阵求导过程,特别是对∂∂w(y−Xw)⊤(y−Xw)∂w∂​(y−Xw)⊤(y−Xw)的推导,揭示了为何需要X⊤XX⊤X可逆(即数据满秩)。其简洁的形式背后,蕴含着丰富的数学思想和工程实践智慧。:通过最小化均方误差(MSE)求解参数,解析解为 w=(X⊤X)−1X⊤yw=(X⊤X)−1X⊤y。:通过引入λ∥w∥22λ∥w∥22​惩罚项,解决X⊤XX⊤X不可逆时的数值不稳定问题,并抑制过拟合。:w=(X⊤X+λI)−1X⊤yw=(X⊤X+λI)−1X⊤y,通过添加对角矩阵强制可逆。

2025-03-15 23:49:23 1537

原创 深度学习总结心得:西瓜书第1、2章与南瓜书学习

西瓜书与南瓜书的“理论-数学”双视角学习,不仅让我掌握了模型评估与选择的方法论,更培养了从“直觉猜想”到“数学证明”再到“工程实现”的完整思维链条。:对南瓜书中的关键公式(如自助法的样本概率计算),通过Python模拟(如numpy.random.choice)验证理论结果。:南瓜书对代价矩阵的推导(如公式2.23的加权错误率)提示,实际任务中需将业务代价(如医疗误诊成本)嵌入模型优化目标。:当模型复杂度(如VC维)超过数据分布的信息量时,泛化误差上界的第二项(与VC维正相关)主导,导致性能下降。

2025-03-13 10:34:47 1366 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除