目录
1.缺失值
在Pandas中,系统默认的缺失值可以是 None (Python中的
None
对象)或
np.nan
(NumPy中的
np.nan
对象)。这两种缺失值在Pandas中会被自动识别并处理。 当使用
None
作为缺失值时,Pandas会将其视为
object
类型;而使用
np.nan
作为缺失值时,Pandas会将其视为
float
类型
2.info函数
info
是Pandas中DataFrame对象的一个方法,用于获取关于DataFrame的基本信息摘要,包括行数、列数、每列的非空值数量、数据类型等。调用
info()
方法可以快速查看DataFrame的整体情况,帮助您了解数据集的结构和特征。
import pandas as pd
df=pd.DataFrame([[1,2,np.nan],[4,np.nan,6],
[5,6,7]])
df.info()
#运行结果: <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 3 entries, 0 to 2
# Data columns (total 3 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 0 3 non-null int64
# 1 1