配置yam模式,写代码连接数据库,写回数据库

在 Spark 的 YARN 模式下连接数据库并将处理后的数据写回数据库,下面以连接 MySQL 数据库为例,为你详细介绍操作步骤及代码示例。

步骤分析

  1. 配置环境:确保你已经完成了 Spark 在 YARN 模式下的配置,同时下载并将 MySQL 的 JDBC 驱动(mysql-connector-java-x.x.x.jar)放到 Spark 的jars目录下。
  2. 编写代码:使用 Python(pyspark)或者 Scala 编写代码来连接数据库、读取数据、处理数据,最后将结果写回数据库。
  3. 提交任务:使用spark-submit命令将代码提交到 YARN 集群上运行。

代码示例

Python (PySpark)

python

from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder \
    .appName("ReadAndWriteToMySQL") \
    .master("yarn") \
    .getOrCreate()

# 数据库连接配置
jdbc_url = "jdbc:mysql://your_mysql_host:3306/your_database_name"
properties = {
    "user": "your_username",
    "password": "your_password",
    "driver": "com.mysql.cj.jdbc.Driver"
}

# 从数据库读取数据
df = spark.read.jdbc(url=jdbc_url, table="your_table_name", properties=properties)

# 简单的数据处理示例:显示数据的基本信息和前几行
df.printSchema()
df.show()

# 假设我们要写回处理后的数据,这里简单地将原数据写回另一个表
new_table_name = "new_table_name"
df.write.jdbc(url=jdbc_url, table=new_table_name, mode="overwrite", properties=properties)

# 停止SparkSession
spark.stop()
Scala

scala

import org.apache.spark.sql.SparkSession

object ReadAndWriteToMySQL {
  def main(args: Array[String]): Unit = {
    // 创建SparkSession
    val spark = SparkSession.builder
      .appName("ReadAndWriteToMySQL")
      .master("yarn")
      .getOrCreate()

    // 数据库连接配置
    val jdbcUrl = "jdbc:mysql://your_mysql_host:3306/your_database_name"
    val connectionProperties = new java.util.Properties()
    connectionProperties.setProperty("user", "your_username")
    connectionProperties.setProperty("password", "your_password")
    connectionProperties.setProperty("driver", "com.mysql.cj.jdbc.Driver")

    // 从数据库读取数据
    val df = spark.read.jdbc(jdbcUrl, "your_table_name", connectionProperties)

    // 简单的数据处理示例:显示数据的基本信息和前几行
    df.printSchema()
    df.show()

    // 假设我们要写回处理后的数据,这里简单地将原数据写回另一个表
    val newTableName = "new_table_name"
    df.write.mode("overwrite").jdbc(jdbcUrl, newTableName, connectionProperties)

    // 停止SparkSession
    spark.stop()
  }
}

提交任务到 YARN 集群

将上述代码保存为文件(例如read_write_mysql.pyReadAndWriteToMySQL.scala),然后使用spark-submit命令提交任务:

Python 代码提交

bash

spark-submit \
    --master yarn \
    --deploy-mode cluster \
    read_write_mysql.py

Scala 代码提交

首先将 Scala 代码打包成 JAR 文件,然后使用以下命令提交:

bash

spark-submit \
    --master yarn \
    --deploy-mode cluster \
    --class ReadAndWriteToMySQL \
    your_project_name.jar

注意事项

  • 要把your_mysql_hostyour_database_nameyour_usernameyour_passwordyour_table_namenew_table_name替换成实际的数据库信息。
  • 若使用不同的数据库,需要把driver属性和 JDBC URL 修改成对应数据库的驱动和 URL。
在Ubuntu上配置Yum源通常是在Debian系的系统中操作`apt`或`apt-get`的,而不是`yum`,因为`yum`是Red Hat家族(如CentOS)的包管理器。不过如果你需要配置`apt`源(对于Debian),这里是一个基本步骤: 1. 打开终端:按下`Ctrl+Alt+T`组合键或者搜索“终端”打开。 2. 查看当前可用的软件源列表:如果你想要添加新的源,首先需要了解它的地址,例如: ```sh $ sudo nano /etc/apt/sources.list ``` 3. 添加新源:在文件底部追加新的`deb`或`deb-src`条目,格式如下: ``` deb [arch=amd64] https://your-source-url/dists/bionic/main bionic main restricted universe multiverse deb-src [arch=amd64] https://your-source-url/dists/bionic/main bionic main restricted universe multiverse ``` 4. 更新密钥:替换`https://your-source-url`为你新添加源的URL,然后运行: ```sh $ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys KEY_ID ``` 其中`KEY_ID`是对应源的公钥ID,通常可以在发布者的网站上找到。 5. 更新源列表并安装软件:完成上述步骤后,更新列表并安装软件包: ```sh $ sudo apt update $ sudo apt install software-name ``` 请注意,`apt`不支持`yum`源,因此你需要确认你正在处理的是正确的工具。如果你想为`yum`做类似的操作,那应该是针对Red Hat系系统,比如使用`yum-config-manager`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值