自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 相关类可视化图像

通过亲身体验从数据的收集、整理到选择合适的可视化图像进行呈现的整个过程,我们期望深化对数据可视化的理解,掌握如何依据数据性质和分析目的精准选用恰当的可视化方式,进而提升我们从数据中挖掘有价值信息的能力,为后续在学术研究、实际业务分析等多方面的数据应用奠定坚实基础。上述代码中,先利用numpy生成了一个10x10的随机数据矩阵作为示例数据,然后通过seaborn库中的heatmap函数来创建热力图,并通过annot=True参数使得每个单元格内显示对应的数值,还设置了颜色映射方案为viridis。

2025-06-16 22:46:20 495

原创 数据可视化中的交互

交互的原则、交互的分类以及常见的交互技术,尤其是几种常见的交互技术,只有熟练掌握并使用恰当,才可能设计出用户体验良好的可视化应用。例如,交互的延时性需要在用户可以接受的范围之内,并有效控制用户交互的成本。通过共享暗黑主题(ThemeType.DARK)保持风格统一,其中散点图添加回归线对比东西部趋势,折线图展示区域 AQI 变化,体现了多维度数据对比的可视化设计。使用pyecharts的Bar组件实现城市 AQI 值横向排序,通过MarkLine标记均值线,并利用颜色区分高于 / 低于均值的城市。

2025-06-16 22:25:38 552

原创 地理特征类可视化图像总结

在环境保护中,通过分析区域地图上的生态敏感区和污染源分布,制定针对性的保护措施,加强环境监管,维护生态平衡,实现经济发展与环境保护的协调共进。其区域差异对比鲜明,地理关联性强,适合展示聚合数据(如省级平均值),视觉简洁,便于快速解读。地理特征类可视化图像能够以直观的形式,精准呈现地形地貌的起伏、地势的高低,清晰展示不同区域的边界划分,还能将气候、土壤、植被等自然与人文地理要素的空间分布、相互关系及变化趋势生动地展现出来,助力于诸如城市规划、环境保护、文旅开发、资源勘探等多个领域做出科学合理的分析与决策。

2025-05-26 23:48:25 912

原创 文本数据可视化

文本是语言和沟通的载体,文本的含义以及读者对文本的理解需求均纷繁复杂。例如,对于同一个文本,不同的人的解读也是不一样的,有的人希望了解文本中涉及到的事物,而有的人希望得到文本中的关键词。一般把对文本的理解 需 求 分 成 三 级 : 词 汇 级 ( Lexical Level ) 、 语 法 级(Syntactic Level)和语义级(Semantic Level)。文本文档的类别多种多样,包括单文本、文档集合和时序文本数据三大类,这使得文本信息的需求更为丰富。要求:将操作步骤逐一展示,描述背后的原理。

2025-05-22 18:59:22 772

原创 时间趋势类可视化图像总结

它通过一系列水平排列的柱子,以柱子的增减来表示数据的变化,每根柱子代表一个数据变化步骤,柱子之间的空白区域则突出了数据变化的阶段性。它由一个矩形箱体和两条须线组成,箱体的上下边缘分别表示数据的上四分位数和下四分位数,箱体中间的横线表示中位数,须线则表示数据的范围,超出须线范围的点通常被视为异常值。堆积柱状图是柱状图的一种扩展形式,它将不同类别的数据堆积在同一柱子中,通过不同颜色的区域展示各部分占总体的比例关系。常用于分析数据的构成和比例关系,如在市场分析中,展示不同产品在各季度的销售额占总销售额的比例;

2025-05-12 20:38:27 695

原创 关系数据的可视化

热力图则通过颜色的深浅来表示数据值的大小,使得数据的分布和密度一目了然,特别适合展示大规模数据的总体趋势和局部特征。综上所述,本实验通过综合运用多种可视化技术,不仅成功地展示了关系型数据的结构和模式,还揭示了数据中的隐藏信息和趋势。这些可视化方法的应用,不仅提高了数据的可读性和可解释性,还为用户提供了更直观、更高效的数据探索工具。然而,随着数据规模的增加和复杂度的提升,如何平衡可视化的自动化程度和参数调优的依赖性,以及如何克服大规模数据处理时的性能瓶颈,仍然是未来研究和实践中需要解决的重要问题。

2025-05-04 11:52:10 665

原创 比例数据可视化

在本次实验中,我深入学习并掌握了如何从CSV文件中提取数据,并将这些数据有效地加载到Pandas的DataFrame中,这是数据分析的基础步骤。我学会了利用Pandas的强大功能进行数据合并、分组、聚合以及排序,这些技能对于数据重组和分析至关重要。此外,我还探索了如何使用索引操作来优化数据处理流程。实验的另一个重点是数据可视化,我通过Matplotlib和Squarify库成功地绘制了板块层级图,这种图形能够直观地展示不同部门中过道和产品的数量分布。

2025-04-21 19:45:09 1871

原创 局部与整体类可视化图像

直观展示比例关系:饼图将一个整体分割成不同的扇形部分,每个扇形的大小代表该部分在整体中所占的比例,通过扇形的角度和面积大小,能让人一眼看清各部分的占比情况。直观呈现比例:通过扇形的大小来表示各部分在总体中所占的比例,用户可以直观地比较同一层级中不同类别之间的相对大小,以及不同层级之间的占比关系。数据丰富度高:能够展示大量的数据信息,同时呈现多个维度的分类数据,既可以展示整体的分布情况,又能深入展示各部分的细节。

2025-04-07 21:58:46 1722

原创 时间数据的可视化(第3章实验)

本次实验不仅加深了我对数据可视化方法的理解,还提升了我根据数据类型和分析需求选择合适图表的能力。堆叠柱形图能够直观地展示不同类别数据的总量及其内部各部分的比例关系,树图通过层次化的结构清晰地呈现数据的层级关系,箱线图则在分析数据的分布特征(如中位数、四分位数、异常值等)方面表现出色。很相似,在柱形图中,数据值为并行排列,而在堆叠柱图则是一个个叠加起来的。的关系,南丁格尔玫瑰图会将数据的比例大小夸大,尤其适合对比大小相近的数。这里就讲述下离散型数据的堆叠柱形图,堆叠柱形图的几何形状和常规柱形图。

2025-04-01 21:27:08 1603

原创 比较与排序类可视化图像

哑铃图是一种直观展示数据差异和变化趋势的可视化工具,通过连接两个数据点的线段,能够清晰地呈现两个时间点或组别之间的对比关系,广泛应用于时间序列比较、分组对比分析、业务绩效评估等场景,具有节省空间、灵活定制的特点,有助于快速传达关键信息并辅助决策。词云图是一种通过视觉化方式直观展示文本中关键词频率的图表,具有直观、灵活、视觉吸引力强等特点,广泛应用于文本分析、创意设计、数据可视化、教育与培训以及市场研究等场景,能够快速传达文本的核心内容和主题。

2025-03-24 16:52:11 490

原创 分布类相关的可视化图像

D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。D3 的全称是(Data-DrivDocuments),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。

2025-03-17 20:32:37 867

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除