- 博客(12)
- 收藏
- 关注
原创 机器学习力场实战:从入门到精通
系统讲解机器学习力场建模技术,涵盖DeePMD等主流软件和NequIP/MACE等高效模型,降低数据生产成本。重点介绍开箱即用的通用大模型(MACE-OFF23等)的使用与微调方法,并提供丰富代码示例,助力快速掌握量化计算与机器学习力场开发。
2025-09-15 17:05:08
82
原创 AI赋能光学设计:LLM驱动的智能器件创新!
培养基于大语言模型(LLM)的光学器件设计能力,涵盖Transformer架构、Prompt工程、FDTD仿真集成等核心技术。学生将掌握自然语言与光学参数的映射方法,开发语言驱动的设计系统,完成结构优化全流程,并具备构建多模态Agent的工程实践能力,最终形成自然语言交互的新型工程设计思维。
2025-09-15 14:32:04
218
原创 结构力学与AI融合:从FEA到PINN实战!
系统培养结构力学与AI交叉能力,从静力平衡、刚度矩阵等基础出发,延伸至热-结构等多物理场耦合问题。教学结合Python实现FEA和PINN求解PDE,通过梁受力等案例掌握从问题定义到数值求解全流程。同时掌握TensorFlow/PyTorch等AI工具,运用ABAQUS/COMSOL开展应力预测等实操项目,比较传统FEA与PINN优劣,探索AI在结构设计、振动分析等领域的应用边界。
2025-09-13 17:22:14
330
原创 AI赋能流体力学:深度学习与仿真技术融合!
聚焦流体力学仿真与AI技术的融合应用,涵盖CFD、深度学习、DeepSeek大模型及多种AI方法(PINN/GNN等)在流体问题中的实践。学员将掌握OpenFOAM/Fluent仿真工具,学习高保真流场重建技术,并通过U-Net等模型实战项目培养创新能力。课程突出技术交叉应用,帮助提升复杂流体问题的智能求解能力。
2025-09-13 16:37:57
313
原创 【助力发刊】机器学习加速固态电解质设计与发现!
本文摘要介绍了固态离子电解质研究的计算与机器学习方法。主要内容包括:1)固态电解质基本概念和性能表征;2)第一性原理和分子动力学计算方法;3)机器学习算法及其在材料科学中的应用流程;4)特征描述符构建方法;5)Python数据处理和建模工具;6)机器学习预测电解质性能;7)新材料发现方法;8)机器学习与传统模拟的结合策略。该研究为固态电解质的设计和优化提供了系统的计算与人工智能方法。
2025-09-12 15:43:11
137
原创 【助力发刊】AI赋能电磁材料设计:深度学习与大模型创新应用!
系统培养AI在电磁材料设计与仿真中的应用能力,涵盖深度学习、大模型等前沿技术。基于PyTorch等工具,通过CNN、GAN、Transformer等模型构建端到端预测系统,提升传统仿真效率。课程聚焦超材料、量子计算等领域,探索介电常数调控、量子比特设计等应用,结合GPU加速优化多尺度仿真,推动电磁学、材料科学与AI的跨学科创新,培养在隐身技术、高性能天线等领域的工程化解决方案能力。
2025-09-12 15:16:25
340
原创 固态电池材料研发:AI与计算模拟融合之路
本文系统介绍了固态电池(SSB)的研究方法,包括DFT、MD等计算工具的应用,以及机器学习在材料研发中的关键作用。重点阐述了如何结合计算模拟与机器学习算法,通过构建材料特征描述符、性能预测模型等,加速固态电池材料(电极/电解质/界面)的设计与性能优化。同时介绍了Python数据处理工具链和深度学习框架在材料研究中的具体应用,为开发高性能固态电池提供了多尺度研究方法论。
2025-09-11 17:01:46
544
原创 电池界的AlphaGo:机器学习如何破解锂电研发密码!
本文摘要介绍了固态离子电解质研究的关键内容,涵盖基础概念、性能表征及计算方法。重点阐述了利用第一性原理(DFT)和分子动力学(MD)计算电解质性质的方法与挑战,以及机器学习在材料科学中的应用,包括特征构建、算法实现(Python相关库)和性能预测。同时探讨了机器学习与传统计算模拟结合的策略,以加速新型固态电解质材料的发现与设计。
2025-09-11 16:15:13
351
原创 超越衍射极限:COMSOL赋能超表面实现纳米尺度光场调控!
系统讲解超表面物理原理与FEM仿真设计全流程,结合理论讲授与COMSOL仿真实践,帮助学员掌握超表面建模、边界条件设置、参数扫描及优化设计等核心技能。内容涵盖超表面工作机制、典型器件仿真(偏振转换器、相位延迟器等)、参数优化方法等,具备独立完成科研级超表面器件仿真设计的能力。
2025-09-10 16:01:43
488
原创 智能光场:深度学习重构计算光学成像新范式!
系统讲解深度学习在计算成像中的应用,涵盖算法原理、光学系统优化设计及计算机视觉任务全流程。通过顶刊论文复现、案例实操等方式,帮助学员掌握前沿研究方法和科研写作技巧。提供完整数据集和代码资源,支持独立开展科研项目,提升计算成像领域的创新研究能力。
2025-09-10 14:40:23
420
原创 深度学习赋能拓扑优化:从理论到实战!
系统介绍深度学习与拓扑优化的前沿交叉应用,通过理论讲解与实践操作相结合的方式,培养运用TensorFlow框架和COMSOL软件进行结构智能优化的能力。
2025-09-09 17:28:16
248
原创 颠覆设计范式:深度学习驱动超材料逆向设计的革命!
深度弹性波超材料基础理论、计算方法;深度学习算法及Tensorflow实现;COMSOL与Matlab联合的数据集自动生成方法;重点讲解基于物理启发神经网络(PINN)的色散曲线预测与设计,以及深度学习在正向预测、参数设计和拓扑优化中的应用。课程将提供完整的数据集和实现代码,帮助学员掌握弹性波超材料智能设计的关键技术。
2025-09-09 17:03:48
360
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人