“日出东海落西山 愁也一天 喜也一天 遇事不钻牛角尖”
文章目录
前言
今天讲什么?:
图论是计算机科学中一个非常重要的分支,在困难题中,很多时候图论算法都能提供有效的解决方案。
通过学习这些经典的图论算法,我们可以更好地理解有关:
如何用最优的方式在节点和边之间进行数据传递的算法问题。
本文将带你初步探索图论中的几种核心算法,如最短路径算法、最小生成树、二分图匹配、网络流等,并通过Java语言为这些算法提供通俗易懂的实现和讲解。即使你对图论的理解有限,本文也会帮助你轻松掌握这些关键的算法和它们的实际应用场景。并给出我常用的模板供大家参考.
文章有误敬请斧正 不胜感恩!||Day03
提示:以下是本篇文章正文内容,
图论是计算机科学中的一个重要领域,涉及节点(顶点)和边的相关问题。本文深入探讨了几个关键的图论算法,包括最短路径算法、最小生成树、图匹配算法以及网络流算法,所有的实现都使用Java语言编写。
1. 最短路径算法
最短路径算法用于在加权图中寻找从一个节点到其他节点的最短路径。它们被广泛应用于GPS系统、网络路由等场景。
Dijkstra算法
Dijkstra算法用于找到带有非负权重的图中从源节点到其他节点的最短路径。该算法使用优先队列来扩展当前已知的最短距离。
Java 实现:
import java.util.*;
class Dijkstra {
static final int INF = Integer.MAX_VALUE;
static List<List<int[]>> adj = new ArrayList<>();
static int[] dist;
static boolean[] visited;
static void dijkstra(int start, int n) {
dist = new int[n];
visited = new boolean[n];
Arrays.fill(dist, INF);
PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
dist[start] = 0;
pq.add(new int[]{
0, start});
while (!pq.isEmpty()) {
int[] curr = pq.poll();
int u = curr[1];
if (visited[u]) continue;
visited[u] = true;
for (int[] edge : adj.get(u)) {
int v = edge[0], weight = edge[1];
if (dist[v] > dist[u] + weight) {
dist[v] = dist[u] + weight;
pq.add(new int[]{
dist[v], v});
}
}
}
}
public static void main(String[] args) {
// 初始化图
int n = 5;
for (int i = 0; i < n; i++) adj.add(new ArrayList<>());
// 添加边 (节点, 权重)
adj.get(0).add(new int[]{
1, 2});
adj.get(1).add(new int[]{
2, 1});
adj.get(0).add(new int[]{
2, 4});
dijkstra(0, n);
System.out.println(Arrays.toString(dist));
}
}
Bellman-Ford算法
Bellman-Ford算法可以处理包含负权重的图,它通过多次松弛所有的边来寻找最短路径,并检测是否存在负权重环。
Java 实现:
import java.util.Arrays;
class BellmanFord {
static class Edge {
int u, v, w;
Edge