二叉平衡搜索树---红黑树


前言

红黑树是一种自平衡二叉查找树,它在1972年由鲁道夫·贝尔发明,是为了克服二叉查找树在最坏情况下的性能问题而设计的。红黑树能够在最坏情况下也保持较为高效的查找、插入和删除操作时间复杂度为O(log n),其中n是树中节点的数量。


一、红黑树的概念

红⿊树是⼀棵自平衡⼆叉搜索树,他的每个结点增加⼀个存储位来表示结点的颜⾊,可以是红⾊或者⿊⾊。 通过对任何⼀条从根到叶子的路径上各个结点的颜⾊进⾏约束,红⿊树确保没有⼀条路径会⽐其他路径长出2倍,因⽽是接近平衡的。

 

1.红黑树的规则

  1. 每个结点不是红色就是黑色。
  2. 根节点是黑色的。
  3. 如果一个结点是红色的,则它的两个孩子结点必须是黑色的,也就是说任意一条路径不会有连续的红色结点
  4. 对于任意一个结点,从该结点到其所有NULL结点的简单路径上,均包含相同数量的黑色结点
  5. 所有叶子节点(外部节点,NIL节点,通常不画出)都是黑色(他这⾥所指的叶⼦结点不是传统的意义上的叶子结点,⽽是我们说的空结点,有些书籍上也把NIL叫做外部结点。NIL是为了方便准确的标识出所有路径)

这些性质保证了从根到叶子的最长路径不会超过最短路径的两倍,因此红黑树大致是平衡的。

2. 红黑树的效率

假设N是红⿊树树中结点数量,h是最短路径的⻓度,红⿊树增删查改最坏也就是⾛最⻓路径 ,时间复杂度还是O(logN)。

红⿊树的表达相对AVL树要抽象⼀些,AVL树通过⾼度差直观的控制了平衡。红⿊树通过4条规则的颜⾊约束,间接的实现了近似平衡,他们效率都是同⼀档次,但是相对⽽⾔,插⼊相同数量的结点,红⿊树的旋转次数是更少的,因为他对平衡的控制没那么严格。

二、红黑树的实现

1.红黑树的结构

// 枚举值表示颜色
enum Colour
{
	RED,
	BLACK
};

// 这里我们默认按key/value结构实现
template<class K, class V>
struct RBTreeNode
{
	// 这里更新控制平衡也要加入parent指针
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{
	}
};

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
private:
    Node* _root = nullptr;
};

2. 红黑树的插入

  1. 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊,插⼊后我们只需要观察是否符合红⿊树的4条规则
  2. 如果是空树插⼊,新增结点是黑色结点。如果是非空树插⼊,新增结点必须红色结点,因为非空树插⼊黑色节点,新增黑色结点就破坏了规则4,规则4是很难维护的
  3. 非空树插⼊后,新增结点必须红色结点,如果⽗亲结点是黑色的,则没有违反任何规则,插⼊结束
  4. 非空树插⼊后,新增结点必须红色结点,如果父亲结点是红色的,则违反规则3。进⼀步分析,c是红色,p为红,g必为黑,这三个颜⾊都固定了,关键的变化看u的情况,需要根据u分为以下几种情况分别处理。
     
检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论:
说明:下图中假设我们把新增结点标识为c (cur),c的父亲标识为p(parent),p的父亲标识为g(grandfather),p的兄弟标识为u(uncle)。这样便于理解。
2.1 情况一:只需变色
  • cur为红,p为红,g为黑,u存在且为红;则将p和u变⿊,g变红。在把g当做新的c,继续往上更新。

因为p和u都是红色,g是黑色,把p和u变⿊,左边子树路径各增加⼀个黑色结点,g再变红,相当于保持g所在子树的黑色结点的数量不变,同时解决了c和p连续红色结点的问题,需要继续往上更新是因为,g是红色,如果g的父亲还是红色,那么就还需要继续处理;如果g的⽗亲是黑色,则处理结束了;如果g就是整棵树的根,把g变为黑色。

情况1只变色,不旋转。所以⽆论c是p的左还是右,p是g的左还是右,都是上面的变色处理方式。

注:这里的树可能是一颗子树,也可能是一颗完整的树 

g是完整的树: 

g是一颗子树: 

 短一种g是红色,如果g的父亲还是红色,那么就还需要继续处理,g是一颗子树上面还有节点需要更新

 

2.2 情况二: 单旋 + 变色
  • cur为红,p为红,g为黑u不存在/u存在且为黑;u不存在,则c⼀定是新增结点,u存在且为⿊,则c⼀定不是新增的,c之前是黑色的,是在c的子树中插⼊,符合情况1,变色将c从黑色变成红色,更新上来的。
     

 分析:p必须变黑,才能解决,连续红色结点的问题,u不存在或者是黑色的,这⾥单纯的变色无法解决问题,需要旋转+变色。

           g

     p          u

如果p是g的左,c是p的左,那么以g为旋转点进行右单旋,再把p变⿊,g变红即可。p变成课这颗树新的根,这样子树黑色结点的数量不变,没有连续的红色结点了,且不需要往上更新,因为p的父亲是黑色还是红色或者空都不违反规则。

           g

     u          p

                        c 

如果p是g的右,c是p的右,那么以g为旋转点进行左单旋,再把p变黑,g变红即可。p变成课这颗树新的根,这样子树黑色结点的数量不变,没有连续的红色结点了,且不需要往上更新,因为p的父亲是黑色还是红色或者空都不违反规则
 

 2. 3 情况三: 双旋 + 变色

            g

     p           u

         c 

如果p是g的左,c是p的右,那么先以p为旋转点进⾏左单旋,再以g为旋转点进⾏右单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则。

            g

     u            p

              c 

如果p是g的右,c是p的左,那么先以p为旋转点进⾏右单旋,再以g为旋转点进⾏左单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则
 

 3. 代码实现

#pragma once

// 枚举值表示颜色
enum Colour
{
	RED,
	BLACK
};

// 这里我们默认按key/value结构实现
template<class K, class V>
struct RBTreeNode
{
	// 这里更新控制平衡也要加入parent指针
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{
	}
};

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<k, v>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;



		while (parent && parent->_col == RED)
		{
			Node* Grandfather = parent->_parent;
			
			if (parent = Grandfather->_left)
			{
				//   g
				// p   u
				Node* Uncle = Grandfather->_right;
				if (Uncle && Uncle->_col == RED)//叔叔存在且为红
				{
					parent->_col = Uncle->_col == BLACK;
					Grandfather->_col = RED;

					cur = Grandfather;
					parent = cur->_parent;
				}
				else//u存在且为黑或不存在 
				{
					//单旋 + 变色
					if(cur == parent->_left)
					{
						//    g
						//  p   u
						//c
						//单旋 + 变色
						RotateR(Grandfather);
						parent->_col = BLACK;
						Grandfather->_col = RED;
					}
					else
					{
						//     g
						//  p     u
						//    c
						// 双旋 + 变色
						RotateL(parent);
						RotateR(Grandfather);
						Grandfather->_col = RED;
						cur->_col = BLACK;

					}
					break;
				}
			}
			else //parent = Grandfather->_right
			{
				//   g
				//u     p

				Node* uncle = Grandfather->_left;
				if(uncle && uncle->_col == RED)//叔叔存在且为红
				{
					parent->_col = uncle->_col = BLACK;
					Grandfather->_col = RED;

					// 继续往上处理
					cur = Grandfather;
					parent = cur->_parent;
				}
				else //叔叔不存在,或者存在且为黑
				{
					//   g
					// u   p
					//       c
					// 旋转+变色
					if (cur = parent->_right)
					{
						RotateL(Grandfather);
						parent->_col = BLACK;
						Grandfather->_col = RED;
					}
					else
					{
						//    g
						// u     p
						//     c
						//双旋 + 变色
						RotateR(parent);
						RotateL(Grandfather);
						cur->_col = BLACK;
						Grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col == BLACK;
		return true;

	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while(cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			} 
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			} 
				else
			{
			return cur;
			}
		} 
		return nullptr;
	}

private:
	Node* _root = nullptr;

};

总结

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log n),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

红黑树通过颜色规则和旋转操作,在动态数据集中维持近似平衡,适合需要高效插入、删除的场景。其核心在于插入后的‌颜色翻转与旋转‌,以及删除后的‌兄弟节点借调与结构调整‌。理解这些规则和场景,是掌握红黑树的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值