5篇1章3节:二分类变量的Meta分析模型,分析公式构建和结果解读

基于R语言的二分类变量Meta分析

Meta分析是一种将多个独立的研究结果进行综合分析的统计方法。对于二分类变量的Meta分析,目的是整合多个研究的结论,给出一个更加稳健的效应量。本文将基于Fleiss93数据集,利用Meta扩展包进行二分类变量的Meta分析,详细分析相关的统计方法与解读异质性与效应量。

一、背景介绍

数据介绍

Fleiss93数据集来自Meta扩展包,包含了20世纪70年代至80年代进行的七个关于阿司匹林预防心肌梗死后死亡的临床试验。这些研究探索了试验组(服用阿司匹林)与对照组(未服用阿司匹林)之间的死亡率差异。

Meta扩展包是专门用于进行Meta分析的R包。它支持处理二分类变量、连续变量以及生存分析数据,能够综合多个独立研究的结果,生成合并效应量和置信区间。Meta扩展包提供了多种效应量计算方法,如比值比(OR)、相对危险度(RR)和率差(RD)等,还支持固定效应模型和随机效应模型的选择。此外,Meta包还提供了异质性检验、漏斗图和森林图等可视化工具,帮助用户直观地分析研究间的异质性和偏倚。

library(meta)
data(Fleiss93)
str(Fleiss9
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MD赋能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值