Meta分析是一种将多个独立的研究结果进行综合分析的统计方法。对于二分类变量的Meta分析,目的是整合多个研究的结论,给出一个更加稳健的效应量。本文将基于Fleiss93数据集,利用Meta扩展包进行二分类变量的Meta分析,详细分析相关的统计方法与解读异质性与效应量。
一、背景介绍
数据介绍
Fleiss93数据集来自Meta扩展包,包含了20世纪70年代至80年代进行的七个关于阿司匹林预防心肌梗死后死亡的临床试验。这些研究探索了试验组(服用阿司匹林)与对照组(未服用阿司匹林)之间的死亡率差异。
Meta扩展包是专门用于进行Meta分析的R包。它支持处理二分类变量、连续变量以及生存分析数据,能够综合多个独立研究的结果,生成合并效应量和置信区间。Meta扩展包提供了多种效应量计算方法,如比值比(OR)、相对危险度(RR)和率差(RD)等,还支持固定效应模型和随机效应模型的选择。此外,Meta包还提供了异质性检验、漏斗图和森林图等可视化工具,帮助用户直观地分析研究间的异质性和偏倚。
library(meta)
data(Fleiss93)
str(Fleiss9