如何让这些数字和标签变成一幅能看懂的“图”?R 语言的可视化工具给了我们答案——从展示聚类演变路径的树形图,到追踪数值变化的折线图,再到揭示节点间联系的网络图。本文系统介绍了三种核心可视化思路:① 聚类演变路径图——展示不同分辨率下聚类标签的迁移与变化;② 折线图——追踪分组数值的走势,并通过分面展示多维信息;③ 网络图——揭示节点间的联系与权重,并通过颜色、大小等元素传递更多信息。
一、聚类演变图的绘制
在机器学习或数据分析中,聚类(clustering) 是常用的无监督学习方法。当我们对同一个数据集使用不同参数(如不同聚类数或不同聚类算法)得到一系列聚类结果时,如何比较这些聚类结果之间的关系?哪些样本在参数变化时保持稳定?哪些样本在不同聚类设置间跳变?这时,ClustreePlot 就派上用场了。ClustreePlot 是 plotthis 包 提供的一种可视化方法,用于展示不同聚类设置间的“演变路径”——即不同参数值下的类别标签之间如何关联。图中节点代表每个参数值下的某类簇,边代表不同参数值下簇之