在全球健康研究中,全球疾病负担(GBD)分析已成为评估各类疾病、伤害及风险因素影响的重要工具。然而,GBD主要依赖汇总数据,缺乏个体层面的高分辨率信息,难以直接分析个体风险因素与健康结局的关系。近年来,随着多种个体数据库(如NHANES、CHARLS、MIMIC)和汇总数据库(如WHO GHO、ECDC Surveillance Data)的不断完善,研究者有条件通过联合分析多源数据的方法,提升GBD分析的精确性、可比性及政策应用价值。本文将重点探讨个体数据与汇总数据的特性差异、互补性及联合分析策略,为科学研究和公共卫生决策提供参考。
一、个体数据与汇总数据的特性对比
全球疾病负担(Global Burden of Disease, GBD)数据库因其覆盖范围广、数据标准化程度高、跨国家和地区的可比性强,成为许多研究者进行疾病负担分析的首选。然而,在开展GBD分析之前,研究者必须充分了解它与其他公共健康数据库的差异,明确数据类型和分析目标,以决定是否需要联合其他数据库进行综合分析,从而提高研究的准确性与可靠性。
公共健康数据主要可以分为两类:个体层面数据和汇总层面数据。个体数据如美国的NHANES(National Health and Nutrition Examination Survey)、MIMIC(Medical Inform