- 博客(2351)
- 收藏
- 关注

原创 9篇2章11节:基于GBD数据的医学科研成文的六步法
文章详细阐述了如何从确定研究问题、选择GBD指标、制定统计方法、规划结果展示,到撰写逻辑完整、结构清晰的科研论文。指南强调了文献对照、创新性验证、多学科反馈和投稿策略的重要性,并指出初期可以从低影响因子期刊积累经验,逐步向高影响力期刊提升发表水平。本文旨在帮助医学科研新人系统掌握从数据获取到论文撰写的完整流程,提高研究效率和学术影响力。
2025-09-15 17:13:33
992

原创 9篇1章17节:特殊的NHANES数据解读,包括NNYFS、NHEFS、NHES 和 HHANES 等数据
NHANES及其附属研究覆盖了从儿童到老年人的各个年龄层,通过多阶段、多层级的抽样设计和标准化数据收集方法,形成了具有全国代表性的健康数据库。NNYFS首次系统收集了3–15岁儿童青少年的体适能和身体活动水平,为儿童肥胖防控和教育政策提供了客观数据;NHEFS则基于1971–1975年NHANES I的样本,进行了多轮长期随访,追踪25–74岁成人的健康、发病、死亡及医疗利用情况,为慢性病研究和公共卫生政策制定奠定了基础。此外,NHANES历史调查(NHES I-III、NHANES I-III、HHANE
2025-09-08 16:55:56
1038

原创 《人工智能大模型与智能体的应用》章节目录(持续更新)
在数字化席卷全球的今天,人工智能早已走出科幻,深度融入我们生活的每个角落。从唤醒智能音箱到获取个性化推荐,从提升工作效率到改变各行各业的运行方式,AI正以前所未有的速度成为现代生活的“必需品”。它不是取代人类,而是赋能个体,让每个人都能拥有前所未有的创造力与效率。更重要的是,如今学习和使用AI的门槛比想象中低得多,不再是程序员的专属,而是每个普通人都可以掌握的基本技能。
2025-05-25 10:02:50
428

原创 《用R探索医药数据科学》目录(持续更新中,专栏已超170万字)
市面上的 R 语言培训班和书籍(包括网络上的文章或视频),由于受限于培训时间或书籍篇幅,往往难以深入探讨 R 语言在数据科学或人工智能中的具体应用场景,内容泛泛而谈,最终无法真正解决实际工作中的问题。同时,它们也缺乏针对医药领域的深度结合与讨论。为了解决这些痛点,我们推出了《用 R 探索医药数据科学》专栏。该专栏将持续更新,不仅为您提供系统化的学习内容,更致力于成为您掌握最新、最全医药数据科学技术的得力助手。
2024-11-18 06:22:40
8630
39
原创 正则表达式的基础语法的常用字符类之\s 和 \S
正则表达式(Regular Expression,简称regex)广泛用于字符串操作中,它可以通过定义一个“规则字符串”来对文本进行模式匹配,从而实现字符串的查找、替换、分割等操作。正则表达式的语法虽然复杂,但它的强大之处在于能够灵活地处理非结构化文本,帮助数据分析者快速、高效地提取有用信息,解决实践中遇到的各种与文本相关的数据问题。
2025-09-18 09:31:48
696
原创 正则表达式的基础语法的常用字符类之\d 和 \D
正则表达式的语法虽然复杂,但它的强大之处在于能够灵活地处理非结构化文本,帮助数据分析者快速、高效地提取有用信息,解决实践中遇到的各种与文本相关的数据问题。
2025-09-17 10:24:30
494
原创 正则表达式的基础语法的特殊字符
R语言提供了一些内置函数来处理正则表达式,如grep()、sub()、gsub()、strsplit()和paste()。这些函数结合正则表达式的使用,使得字符串处理变得更加方便和高效。在本节中,我们将详细探讨这些函数的用法,并通过示例演示如何在R中进行字符串处理。
2025-09-17 10:19:32
602
原创 R语言中最常用的几组函数 —— grep()、sub()、gsub()、strsplit() 和 paste(),看看它们如何在实际场景中大显身手
本篇文章,我们就来聊聊R语言中最常用的几组函数 —— grep()、sub()、gsub()、strsplit() 和 paste(),看看它们如何在实际场景中大显身手。
2025-09-16 09:25:48
649
原创 正则表达式的基础要点
正则表达式(Regular Expression,简称regex)广泛用于字符串操作中,它可以通过定义一个“规则字符串”来对文本进行模式匹配,从而实现字符串的查找、替换、分割等操作。正则表达式的语法虽然复杂,但它的强大之处在于能够灵活地处理非结构化文本,帮助数据分析者快速、高效地提取有用信息,解决实践中遇到的各种与文本相关的数据问题。
2025-09-16 09:21:34
785
原创 在 R 语言里,grep()函数具有十分重要的作用,其主要用于在字符串中搜索模式,这里所说的模式其实就是正则表达式,并且最终会返回相应的匹配结果
在 R 语言里,grep()函数具有十分重要的作用,其主要用于在字符串中搜索模式,这里所说的模式其实就是正则表达式,并且最终会返回相应的匹配结果。该函数的核心功能在于能够依据指定的模式去精准查找符合特定条件的字符串。
2025-09-14 20:19:03
578
原创 字符串(String)是编程语言中一种非常基础且重要的数据类型
字符串(String)是编程语言中一种非常基础且重要的数据类型。在R语言中,字符串是一组字符的有序集合,这些字符可以包括字母、数字、符号或其他字符。字符串在数据分析和文本处理任务中非常常见,比如存储文本信息、标识符号、代码中的注释和日志信息等。
2025-09-14 20:18:09
1017
原创 自定义缩放范围在数据分析中的应用也不少,尤其是在处理特定类型的数据时
自定义缩放范围在数据分析中的应用也不少,尤其是在处理特定类型的数据时。例如,在医学影像处理过程中,不同类型的影像数据可能需要不同的缩放范围来优化特征提取的效果。对于MRI(磁共振成像)和CT(计算机断层扫描)图像数据,其像素值范围通常不相同。
2025-09-13 18:47:56
867
原创 自定义缩放范围在数据分析中的应用也不少,尤其是在处理特定类型的数据时
自定义缩放范围在数据分析中的应用也不少,尤其是在处理特定类型的数据时。例如,在医学影像处理过程中,不同类型的影像数据可能需要不同的缩放范围来优化特征提取的效果。对于MRI(磁共振成像)和CT(计算机断层扫描)图像数据,其像素值范围通常不相同。
2025-09-13 18:47:04
720
原创 特征缩放的主要方法包括数据的中心化(Centralization)和标准化(Normalization)
在R语言中,实现特征缩放非常简单。除了前述的scale()函数之外,R还提供了多种其他工具和包(如caret包中的preProcess函数),能够满足各种不同需求的特征缩放操作。
2025-09-12 14:34:03
779
原创 DataEditR:交互式数据编辑
DataEditR 是一个R扩展包,提供了在Shiny应用中交互式查看、输入、筛选和编辑数据集的功能。使用 data_edit() 函数可以进入一个可视化的数据编辑界面,方便用户对数据进行手动调整。
2025-09-12 14:33:14
938
原创 _at 变体函数允许用户对数据框中的特定列进行操作
_if 变体函数基于列的属性进行操作。假设我们需要对所有数值型列进行操作,而对字符型列不进行操作。mutate_if() 是 _if 变体函数的代表,适用于需要根据列的属性(如数据类型)来选择性进行操作的场景。
2025-09-11 09:46:47
348
原创 在dplyr中,_all、_at、_if这三组后缀变体函数用于扩展基础函数的功能
在dplyr中,_all、_at、_if这三组后缀变体函数用于扩展基础函数的功能,使得用户能够在不同场景下更加灵活地操作数据
2025-09-11 09:45:42
586
原创 在数据处理的不同阶段,日期时间数据往往需要在不同的格式之间进行转换
在数据处理的不同阶段,日期时间数据往往需要在不同的格式之间进行转换。R中的 format() 函数提供了灵活的日期时间格式化功能,能够将日期时间对象转换为指定格式的字符串,或将字符串解析为日期时间对象。
2025-09-10 15:03:55
639
原创 日期时间运算在分析中非常常见。R中的日期时间运算非常直观且功能强大,包括加减日期时间、计算时间差等
R中日期时间对象的操作不仅限于创建和转换,还包括提取、修改、与操作时间组件等。在这部分,我们将探讨如何使用R操作日期时间对象的各个组成部分。
2025-09-10 15:03:03
699
原创 使用ifelse()函数创建条件变量
例如,假设我们正在分析iris数据集,并希望根据花瓣长度与宽度的比值(即Pe.Ratio = Petal.Length / Petal.Width)来创建一个新的分类变量Ratio.Category。这个分类变量将根据Pe.Ratio的值分为两个类别:“High”和“Low”。我们可以通过ifelse()函数轻松实现这一目标。
2025-09-09 14:10:07
751
原创 在处理因子(factor)类型的变量时,我们可以使用factor()函数直接对因子变量进行修改
在这个例子中,我们将字符向量dax转换为了因子类型,并且指定了因子的水平(levels)和标签(labels)。我们将Male和Man统一标记为Male,将Lady和Female统一标记为Female。这种操作可以在数据预处理中有效地减少因子水平的复杂性。
2025-09-09 14:08:29
784
原创 除了使用mutate()函数来操作数据框中的变量,我们还可以通过直接赋值的方式修改变量
除了使用mutate()函数来操作数据框中的变量,我们还可以通过直接赋值的方式修改变量。这种方法尤其适合对向量或因子类型的变量进行特定值的替换和更新。
2025-09-09 08:34:39
927
原创 使用mutate()函数创建新变量
在数据分析的过程中,常常需要基于现有变量创建新的派生变量。例如,我们可以基于iris数据集中的两个变量Petal.Length和Petal.Width,创建一个新的变量Pe.Ratio,其值为Petal.Length与Petal.Width的比值。
2025-09-09 08:33:41
828
原创 有时,我们可能需要进行多重类型转换。例如,将整数型变量转换为因子型变量后,再转换为字符型变量
其实在实际的R编程中,正确理解和应用类型转换是确保数据分析和处理成功的关键步骤。通过掌握as.*函数和is.*函数,你可以有效地在不同数据类型之间进行转换,并确保数据类型与预期的一致性。在进行数据分析之前,建议养成良好的数据类型检查习惯,以避免不必要的错误和问题。
2025-09-08 17:00:26
961
原创 R 语言中的所有数据类型转换,数据清洗不再犯难!
R 里最常见的数据类型包括数值型(numeric)、字符型(character)、逻辑型(logical)和因子型(factor)。很多新手常常困惑:为什么一个看起来是“10”的数据,R 却认为它是字符串?这时候,as.numeric()就能派上用场,把字符直接转成数值。
2025-09-08 14:25:28
890
原创 R中提供了一系列as.*函数,用于将数据从一种类型转换为另一种类型
虽然 as.factor() 函数可以自动将数值型变量转换为因子型变量,并按数值顺序排列其水平,但在某些情况下,用户可能需要自定义因子的水平顺序。例如,如果有一个分类变量表示教育程度("高中"、"本科"、"硕士"、"博士"),默认的字母顺序并不符合实际的顺序需求。
2025-09-08 10:02:42
738
原创 在R语言中,数据类型是处理数据分析和操作的基础
在R语言中,数据类型是处理数据分析和操作的基础。在编写和运行R脚本时,时常需要进行数据类型的检查和转换,以确保正确的运算和数据处理。在这一部分,我们将深入探讨如何在R语言中进行数据类型的转换,包括如何利用as.*和is.*函数来实现不同向量类型之间的转换与检测。
2025-09-08 10:01:53
657
原创 9篇2章10节:2025年基于GBD数据的柳叶刀子刊研究深度解析(全网最深度解读)
GBD 数据不仅是统计数字的集合,更是理解疾病负担、挖掘健康问题和指导政策干预的重要工具。本文以《The Lancet Public Health》关于东南亚心血管疾病的研究为基础,带领大家学习如何利用 GBD 数据进行区域疾病负担分析。
2025-09-08 05:12:59
914
原创 复数型(Complex)是R语言中的一种数据类型,用于存储复数
在这个例子中,z 是一个复数,其中实部是 2,虚部是 3。复数型数据类型在R中可以用于进行复杂的数学计算,包括复数的加减乘除、求模、求角度等。
2025-09-07 10:13:55
841
原创 在R语言中,数据类型是处理数据分析和操作的基础。
在R语言中,数据类型是处理数据分析和操作的基础。在编写和运行R脚本时,时常需要进行数据类型的检查和转换,以确保正确的运算和数据处理。在这一部分,我们将深入探讨如何在R语言中进行数据类型的转换,包括如何利用as.*和is.*函数来实现不同向量类型之间的转换与检测。
2025-09-07 10:13:07
543
原创 矩阵是一种常见的二维数据结构,类似于一张表格,其中行表示样本,列表示变量
矩阵是一种常见的二维数据结构,类似于一张表格,其中行表示样本,列表示变量。在进行数据分析时,通常需要对矩阵的行和列进行命名,以便明确表示每一行和每一列的含义。R语言中提供了rownames()和colnames()函数来分别为矩阵的行和列进行命名。
2025-09-06 21:03:43
736
原创 在数据科学和统计分析中,命名是组织和管理数据的一个重要部分
在数据科学和统计分析中,命名是组织和管理数据的一个重要部分。尤其是在处理复杂的多维数据集时,为行和列命名有助于清晰地标识数据,并使得后续的分析过程更加直观和便捷。在R语言中,names()函数用于为向量或其他对象分配名称,而对于矩阵这类二维数据结构,则需分别使用rownames()和colnames()函数为其行和列进行命名。本文将详细探讨如何在R中对行和列进行命名,并讨论一些实际应用场景。
2025-09-06 21:02:24
714
原创 数据匹配(Data Matching)是指基于某个或某些相同的变量(字段),将两个数据框合并在一起
数据匹配(Data Matching)是指基于某个或某些相同的变量(字段),将两个数据框合并在一起。数据匹配操作在数据预处理和整合中非常常见,尤其在处理来自不同数据源的医学数据时更是如此。常见的匹配操作包括左连接(left join)、右连接(right join)、内连接(inner join)、全连接(full join)、半连接(semi join)和反连接(anti join)。我们将以构建两个示例数据框为基础,逐步演示这些操作的实现和实际应用场景。
2025-09-06 14:59:38
966
原创 数据重塑之数据去重匹配的内连接(Inner Join)和全连接(Full Join)
数据匹配(Data Matching)是指基于某个或某些相同的变量(字段),将两个数据框合并在一起。数据匹配操作在数据预处理和整合中非常常见,尤其在处理来自不同数据源的医学数据时更是如此。常见的匹配操作包括左连接(left join)、右连接(right join)、内连接(inner join)、全连接(full join)、半连接(semi join)和反连接(anti join)。
2025-09-06 14:58:35
749
原创 数据匹配(Data Matching)是指基于某个或某些相同的变量(字段),将两个数据框合并在一起
数据匹配(Data Matching)是指基于某个或某些相同的变量(字段),将两个数据框合并在一起。数据匹配操作在数据预处理和整合中非常常见,尤其在处理来自不同数据源的医学数据时更是如此。常见的匹配操作包括左连接(left join)、右连接(right join)、内连接(inner join)、全连接(full join)、半连接(semi join)和反连接(anti join)。我们将以构建两个示例数据框为基础,逐步演示这些操作的实现和实际应用场景。
2025-09-06 08:16:48
969
原创 不完全去重
除了使用unique()函数进行完全去重外,在实际的数据清洗工作中,还可能遇到需要基于部分字段进行去重的需求。R中的duplicated()函数可以帮助我们识别部分字段的重复记录,然后根据这些重复记录进行去重操作。
2025-09-06 08:14:29
706
原创 数据去重(Data deduplication)是指识别并删除数据文件集合中的重复数据,仅保留唯一的数据单元
数据去重(Data deduplication)是指识别并删除数据文件集合中的重复数据,仅保留唯一的数据单元,从而消除冗余数据。因为重复数据的存在不但浪费存储资源,而且可能导致数据分析结果出现偏差,所以在数据清洗过程中,去重是不可忽视的一项工作,
2025-09-05 07:52:58
687
原创 数据重塑(Data Reshaping)是指通过对数据框(Data Frame)或其他类型的数据结构进行操作,改变其形式或结构的过程
数据重塑(Data Reshaping)是指通过对数据框(Data Frame)或其他类型的数据结构进行操作,改变其形式或结构的过程。数据重塑的目标是使数据更加符合特定分析的需求,从而简化分析过程,提高分析的准确性和效率。
2025-09-05 07:51:49
591
原创 可视化是对比原始数据和填补数据的强大工具。你可以使用箱线图、密度图或散点图来可视化原始数据和填补后的数据
结果可见(散点图可以将原始数据和填补数据的一一对应点绘制出来,理想情况下,散点应该分布在45度对角线上,这意味着填补值与原始值接近)
2025-09-04 09:25:38
1014
从药品销售与疗效数据分析例子学会R语言中的ggplot2绘图技巧
2024-09-16
用R进行复杂用户行为数据分析:深入理解用户行为、转化率与交互模式
2024-09-15
使用R语言igraph和ggraph包绘制基因相互作用网络图
2024-09-07
使用Shiny构建带有蓝色背景的双人五子棋游戏
2024-09-06
R语言与Shiny的双人飞行棋小游戏代码:回合制胜负与实时状态显示
2024-09-06
使用R语言和recommenderlab包实现基于物品的协同过滤推荐系统及内容属性综合评分
2024-09-05
使用R语言和recommenderlab包构建基于用户协同过滤的自媒体内容推荐系统,结合多属性分析
2024-09-05
使用R语言和randomForest包构建血糖预测模型
2024-09-04
使用R语言和xgboost包构建血糖预测模型
2024-09-04
使用R语言和glmnet包构建血糖预测模型
2024-09-04
使用R语言实现CLARA算法对鸢尾花数据集进行大规模聚类分析
2024-09-03
使用R语言的SOM算法对鸢尾花数据集进行自组织映射分析
2024-09-03
使用R语言中的Fuzzy C-Means算法对iris数据集进行模糊聚类分析
2024-09-03
在R中用谱聚类算法,基于图论的高效数据分组与分析
2024-09-03
在R中使用PCA降维与K-means聚类结合的算法,高效的数据分类与可视化
2024-09-03
在R中使用高斯混合模型,多分布下的概率聚类与模型评估
2024-09-03
在R中使用层次聚类算法,探索数据层次关系的高级聚类方法
2024-09-03
在R中使用DBSCAN,一种密度驱动的高级聚类算法,识别噪声与复杂形状
2024-09-03
模拟家庭收入、区域、年龄、血压及多属性的大规模数据集生成的R代码和一份10000人数据集,可以用于学习机器学习
2024-09-01
理解K-means聚类算法:基于R语言对iris数据集的详细实现与分析,R代码
2024-09-01
trekcolors R 包为科幻迷和数据分析爱好者提供了独特的 Star Trek 和 LCARS 调色板
2024-11-17
R语言数据去重与匹配:20种常用函数详解及实战示例
2024-11-16
10个例子,学会使用管道操作符 %>% 进行数据处理与可视化
2024-11-11
在R语言中实现带有边缘直方图、箱线图和密度图的散点图,以及连续变量直方图的多图展示
2024-11-09
R语言数据重塑,20种高效函数操作数据格式与管理
2024-11-02
R语言字符串操作全攻略,30个技巧一览无余!
2024-10-28
一次性掌握7种强大的临床预测模型
2024-10-27
掌握20个R语言数据清洗技巧,让数据处理更加高效和简单!
2024-10-26
基于机器学习的高血压预测模型构建与评估
2024-10-25
如何通过R代码设置RStudio全局环境
2024-10-23
R语言版本检查与扩展包自动更新示例
2024-10-21
用R语言贪心算法解决旅行商问题的模拟演示
2024-10-17
用R演示药物对糖尿病患者血糖影响的方差分析及可视化
2024-10-17
基于卵巢癌数据的治疗和年龄组生存曲线分析
2024-10-14
使用R语言和ggplot2基于iris数据集绘制常见科研图表
2024-10-12
基于主成分分析的临床高血压患者数据分析与可视化
2024-10-05
用R语言创建基于逻辑回归的高血压预测模型(准确率达到82%)
2024-10-05
用Python的基于逻辑回归的高血压预测模型.py
2024-10-05
基于R语言的主成分分析:模拟数据生成与可视化
2024-10-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人