StableDiffusion之多模态大模型以及本地部署调用

StableDiffusion详解
1Stable Diffusion 简介
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.Stable Diffusion 运行原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.Stable Diffusion 处理流程
在这里插入图片描述
4.Stable Diffusion应用场景
在这里插入图片描述
下面开始介绍其他多模态大模型以及本地化部署调用

  1. 本地部署CogVideoX-5B文生视频模型
    1.1 模型介绍
    1.2 环境安装
    1.3模型下载
    1.4 运行代码
    1.5 生成效果
  2. 使用ollama部署Llama-3.2-11B-Vision-Instruct-GGUF实现视觉问答
    2.1 模型介绍
    2.2 预期用途
    2.3 安装ollama
    2.4 安装 Llama 3.2 Vision 模型
    2.5 运行 Llama 3.2-Vision
    一.本地部署CogVideoX-5B文生视频模型
    1.1 模型介绍
    CogVideoX是 清影 同源的开源版本视频生成模型。下表展示我们在本代提供的视频生成模型列表相关信
    息。
    模型名 CogVideoX-2B
    CogVideoX-5B (教程模
    型)
    CogVideoX-5B-I2V
    模型介绍
    入门级模型,兼顾兼容
    性。运行,二次开发成本
    低。
    视频生成质量更高,视觉
    效果更好的更大尺寸模
    型。
    CogVideoX-5B 图生视
    频版本。
    推理精度
    FP16*(推荐), BF16,
    FP32,FP8*,INT8,不支
    持INT4
    BF16(推荐), FP16,
    FP32,FP8*,INT8,不
    支持INT4
    单GPU显
    存消耗
    SAT FP16: 18GB
    diffusers FP16: 4GB起*
    diffusers
    INT8(torchao): 3.6G起*
    SAT BF16: 26GB
    diffusers BF16 : 5GB起*
    diffusers
    INT8(torchao): 4.4G起*
    多GPU推
    理显存消

    FP16: 10GB* using
    diffusers
    BF16: 15GB* using
    diffusers
    推理速度
    (Step =50,FP/BF16)
    单卡A100: ~90秒 单卡
    H100: ~45秒
    单卡A100: ~180秒 单卡
    H100: ~90秒
    微调精度 FP16 BF16
    微调显存
    消耗
    47 GB (bs=1, LORA) 61
    GB (bs=2, LORA) 62GB
    (bs=1, SFT)
    63 GB (bs=1, LORA) 80
    GB (bs=2, LORA) 75GB
    (bs=1, SFT)
    78 GB (bs=1, LORA)
    75GB (bs=1, SFT,
    16GPU)
    提示词语言
    English*
    提示词长
    度上限
    226 Tokens
    视频长度 6 秒
    帧率 8 帧 / 秒
    视频分辨

    720 * 480,不支持其他分
    辨率(含微调)
    位置编码 3d_sincos_pos_embed 3d_rope_pos_embed
    3d_rope_pos_embed
    +learnable_pos_embed
    1.2 环境安装
# diffusers>=0.30.3
# transformers>=0.44.2
# accelerate>=0.34.0
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg

1.3模型下载
1.4 运行代码

import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a
wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature
acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas
gather, watching curiously and some clapping in rhythm. Sunlight filters through
the tall bamboo, casting a gentle glow on the scene. The panda's face is
expressive, showing concentration and joy as it plays. The background includes a
small, flowing stream and vibrant green foliage, enhancing the peaceful and
magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)

1.5 生成效果
会生成一张高清图
二. 使用ollama部署Llama-3.2-11B-Vision-InstructGGUF实现视觉问答
2.1 模型介绍
Llama 3.2-Vision 是一系列多模态大语言模型(LLM),包括预训练和指令调优的图像推理生成模型,大小分别为11B和90B(输入为文本+图像/输出为文本)。Llama 3.2-Vision 指令调优模型针对视觉识别、图像推理、字幕生成以及回答关于图像的一般问题进行了优化。这些模型在常见的行业基准测试中表现优于许多可用的开源和闭源多模态模型。
模型开发者: Meta
模型架构: Llama 3.2-Vision 基于 Llama 3.1 文本模型构建,后者是一个使用优化的Transformer架构的自回归语言模型。调优版本使用有监督的微调(SFT)和基于人类反馈的强化学习(RLHF)来与人类对有用性和安全性的偏好保持一致。为了支持图像识别任务,Llama 3.2-Vision 模型使用了单独训练的视觉适配器,该适配器与预训练的 Llama 3.1 语言模型集成。适配器由一系列交叉注意力层组成,将图像编码器表示传递给核心LLM。
在这里插入图片描述
支持的语言: 对于纯文本任务,官方支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。Llama 3.2 的训练数据集包含了比这八种语言更广泛的语言。注意,对于图像+文本应用,仅支持英语。
开发者可以在遵守 Llama 3.2 社区许可证和可接受使用政策的前提下,对 Llama 3.2 模型进行其他语言的微调。开发者始终应确保其部署,包括涉及额外语言的部署,是安全且负责任的。
模型发布日期: 2024年9月25日
2.2 预期用途
预期用途案例: Llama 3.2-Vision旨在用于商业和研究用途。经过指令调优的模型适用于视觉识别、图像推理、字幕添加以及带有图像的助手式聊天,而预训练模型可以适应多种图像推理任务。此外,由于Llama 3.2-Vision能够接受图像和文本作为输入,因此还可能包括以下用途:

  1. 视觉问答(VQA)与视觉推理:想象一台机器能够查看图片并理解您对其提出的问题。
  2. 文档视觉问答(DocVQA):想象计算机能够理解文档(如地图或合同)中的文本和布局,并直接从图像中回答问题。
  3. 图像字幕:图像字幕架起了视觉与语言之间的桥梁,提取细节,理解场景,然后构造一两句讲述故事的话。
  4. 图像-文本检索:图像-文本检索就像是为图像及其描述做媒人。类似于搜索引擎,但这种引擎既理解图片也理解文字。
  5. 视觉接地:视觉接地就像将我们所见与所说连接起来。它关乎于理解语言如何引用图像中的特定部分,允许AI模型基于自然语言描述来精确定位对象或区域。
    2.3 安装ollama
#ollama版本需大于等于0.4.0
curl -fsSL https://ollama.com/install.sh | sh
#查看ollama版本
ollama --version

2.4 安装 Llama 3.2 Vision 模型

ollama run llama3.2-vision:11b

2.5 运行 Llama 3.2-Vision
将 images.png` 替换为你选择的图像路径。模型将分析图像并根据其理解提供响应。

ollama run x/llama3.2-vision:latest "Which era does this piece belong to? Give
details about the era: images.png"

然后会输出一张图并且下面会有一段英文解释。
至此,AI大模型全部更新完毕,我尽了自己的努力,希望能帮到一些学习者,技术是不断更新迭代的,需要一直保持积极学习钻研的精神一直学习下去,加油各位,大家一起进步!

<think>嗯,用户想了解基于Stable Diffusion的AIGC系统实现软件开发。首先,我需要明确Stable Diffusion的基本原理和核心组件。Stable Diffusion是一个生成模型,主要用于图像生成,所以得从它的架构说起,比如变分自编码器(VAE)、U-Net和CLIP文本编码器这些部分。 然后,用户可能需要知道整个系统的模块划分。应该分步骤介绍,比如数据处理、模型训练、推理部署这些环节。每个模块的具体功能和技术细节需要解释清楚,比如数据处理中的图像预处理和文本标注,模型训练中的分布式训练和混合精度,推理阶段的优化方法如模型剪枝和量化。 接下来,用户可能关心开发过程中需要注意的挑战。显存优化和计算效率是关键点,特别是训练大规模模型时的显存管理。还有,文本与图像的对齐问题,比如如何确保生成的图像准确反映输入文本的意图,可能需要提到CLIP模型的作用。 另外,实际应用中的优化策略也很重要,比如使用xFormers加速注意力机制,或者通过LoRA进行模型微调,这些都能提升性能和效率。部署方面,用户可能想知道如何将模型集成到应用中,比如使用ONNX或TensorRT进行格式转换,以及开发RESTful API供前端调用。 还要考虑用户的实际需求,他们可能想自己搭建这样的系统,所以需要提供一些具体的工具和框架,比如PyTorch、Hugging Face的Diffusers库,以及部署工具Docker和FastAPI。同时,潜在的挑战如硬件要求高、生成图像的可控性,以及伦理问题,都应该提到,帮助用户全面了解。 最后,确保回答结构清晰,分步骤讲解,每个部分都简明扼要,避免使用过于专业的术语,让不同技术背景的用户都能理解。同时,检查是否符合格式要求,数学公式用$...$,独立公式用$$...$$,并且用中文回答。可能还需要举一些例子,比如损失函数的具体形式,或者模型结构图,但用户不可见,所以不需要在回答中展示。总之,要系统而全面地覆盖基于Stable Diffusion的AIGC系统开发的各个方面,帮助用户建立完整的认识。</think>以下为基于Stable Diffusion的AIGC系统实现软件开发的关键解析,采用分步骤说明: ### 一、系统架构设计 $$ \text{系统架构} = \text{前端交互层} + \text{推理引擎} + \text{模型微调模块} + \text{资源管理系统} $$ 1. **核心组件**: - **Diffusion模型核**:基于Latent Diffusion架构,包含$U\text{-Net}$网络和CLIP文本编码器 - **调度器(Scheduler)**:控制扩散过程的噪声调度策略,常见DDIM、PNDM等算法 - **安全过滤器**:通过NSFW检测模型和内容合规性校验 ### 二、核心开发流程 1. **模型集成阶段**: - 使用Hugging Face Diffusers库加载预训练模型 ```python from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") ``` 2. **性能优化关键**: - 采用xFormers加速注意力计算 - 实现显存优化策略: $$ \text{显存占用} = \text{模型参数量} \times \text{精度因子} + \text{激活值缓存} $$ 3. **微调模块开发**: - Dreambooth个性化训练 - LoRA(Low-Rank Adaptation)适配器集成 - 实现提示词权重控制语法:`(word:weight)`格式 ### 三、关键技术实现 1. **文本编码增强**: - CLIP ViT-L/14文本编码器 - 实现跨模态注意力机制: $$ \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V $$ 2. **图像生成流程**: 1. 文本语义编码:$E_t = \text{CLIP}(prompt)$ 2. 潜空间扩散:$z_t = \text{U-Net}(z_{t-1}, t, E_t)$ 3. 解码生成:$x = \text{VAE.decode}(z_0)$ ### 四、工程化部署方案 | 组件 | 技术选型 | 优化目标 | |------|----------|----------| | 推理服务 | Triton Inference Server | 吞吐量>20 req/s | | 分布式训练 | Horovod + NCCL | 线性加速比>0.85 | | 硬件加速 | TensorRT | 延迟<500ms | ### 五、挑战与解决方案 1. **显存瓶颈**: - 采用梯度检查点技术 - 实现8bit Adam优化器 $$ \text{显存节省率} = 1 - \frac{\text{优化后}}{\text{原始}} \approx 40\% $$ 2. **生成可控性**: - 开发ControlNet插件系统 - 实现基于SegMask的条件控制 ### 六、典型应用场景 1. 创意设计辅助工具开发 2. 个性化头像生成系统 3. 工业设计原型快速迭代 实际开发中需注意: - 使用Diffusers 0.11+版本支持新型调度器 - 部署时推荐采用A10G/A100 GPU集群 - 必须集成安全检查模块防止滥用 当前最前沿的优化方向包括: 1. 基于LCM的快速推理技术 2. SDXL Turbo实时生成方案 3. 多模态混合控制架构 建议采用模块化开发策略,逐步实现文本理解增强、生成质量控制、计算效率优化等核心功能模块。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值