- 博客(22)
- 收藏
- 关注
原创 初识无监督学习-聚类算法中的K-Means算法,从原理公式到简单代码实现再到算法优化
本文介绍了无监督学习中的K-Means聚类算法。K-Means是一种通过迭代寻找k个聚类中心的算法,其目标是最小化簇内平方误差和。算法步骤包括:1)随机初始化k个质心;2)将每个数据点分配到最近质心对应的簇;3)根据当前簇成员重新计算质心位置;4)重复2-3步直至收敛。文章提供了Python实现代码,包括质心初始化、K-Means核心算法和可视化部分,使用sklearn生成模拟数据验证算法效果。K-Means适用于发现数据中的自然分组,是数据挖掘和模式识别中的基础算法。
2025-08-01 01:23:54
301
原创 CART算法-理论部分
摘要:CART算法包括分类树和回归树两种模型。分类树使用基尼系数最小化准则进行二叉划分,选择基尼增益最大的特征和最优划分点。回归树通过递归划分数据空间,使用平方误差最小化准则选择切分变量和切分点,每个叶节点输出区域内样本均值。剪枝过程采用代价复杂度损失函数,通过调整α参数平衡拟合效果与模型复杂度,最终通过交叉验证选择最优子树。该算法能有效处理离散和连续型数据的预测问题。
2025-07-27 11:43:07
624
原创 初识决策树-理论部分
决策树是一种基于树结构的分类模型,通过特征层层划分数据,最终到达叶节点完成分类。其核心概念包括熵(衡量不确定性)、信息增益(特征选择标准)和剪枝策略(防止过拟合)。熵的计算涉及概率分布,条件熵则反映特征对分类的影响。信息增益率解决了信息增益偏向多值特征的问题,基尼系数则是另一种划分标准。连续值需离散化处理,通过中位点划分。剪枝分为预剪枝(限制树深度、节点数等)和后剪枝(基于损失函数优化),以平衡模型复杂度和泛化能力。决策树规则清晰,具有良好可解释性。
2025-07-26 00:02:18
835
原创 最近邻规则分类KNN,原理,k值选择优化,kd树优化,以及iris数据集分类
KNN(K-最近邻)是一种基于实例的懒惰学习分类算法,通过计算未知样本与已知样本的距离(如欧氏距离),选取最近的K个邻居投票决定类别。K值通常取奇数以避免平局,可通过交叉验证优化选择。算法缺点包括计算复杂度高、对不均衡数据敏感,可通过带权KNN(距离加权投票)和KD树(空间划分加速搜索)优化。KD树递归选择划分维度(轮流或方差最大),按中位数分割构建二叉树,搜索时利用超平面距离剪枝减少计算。实践应用需数据归一化,评估指标包括准确率、精确率等。适用于低/中维数据,配合KD树可扩展至高维场景。
2025-07-25 16:51:36
906
原创 初识卷积神经网络CNN
本文摘要:卷积神经网络(CNN)通过局部感知和权重共享机制有效解决了全连接神经网络在处理图像时的局限。文章详细介绍了CNN的核心组件:卷积层通过滑动窗口(卷积核)提取局部特征,池化层降低维度保留关键信息,多通道处理机制适应不同图像格式。关键概念包括通道数、卷积运算规则、填充与步幅对输出尺寸的影响。最后以MNIST手写数字识别为例,展示了包含卷积层、池化层和全连接层的典型CNN实现代码。CNN通过这种特殊结构大幅减少了参数数量,在保持图像空间信息的同时提高了计算效率和模型泛化能力。
2025-07-22 20:14:06
1321
原创 全连接神经网络-学习笔记汇总,包含定义,公式,python代码实现
本文介绍了全连接神经网络的基本结构与工作原理。全连接神经网络由输入层、隐藏层和输出层组成,其中每一层的神经元都与上一层所有神经元相连。文章详细分析了神经网络单元结构,指出不激活时为线性回归模型,使用Sigmoid激活函数则变为逻辑回归模型。 重点讨论了激活函数的作用与类型,包括: Linear函数:适用于回归任务 Sigmoid函数:适用于二分类,但存在梯度消失问题 Tanh函数:改进Sigmoid的对称性问题 ReLU函数:解决梯度消失,计算简单 Leaky ReLU函数:改进ReLU的神经元死亡问题 通
2025-07-20 11:41:22
864
原创 全连接神经网络
全连接神经网络由输入层、隐藏层和输出层组成,其单元结构包含线性运算和激活函数。激活函数引入非线性特性,是神经网络学习复杂关系的关键。常见的激活函数包括Sigmoid(适用于分类但存在梯度消失)、Tanh(对称性更好)、ReLU(计算简单但可能神经元死亡)和Leaky ReLU(解决神经元死亡问题)。SoftMax专用于多分类输出层。前向传播是从输入层到输出层逐层计算的过程,包含线性运算和非线性变换,是神经网络推理的核心步骤。训练过程包括前向传播、误差计算、梯度计算和反向传播更新参数。
2025-07-15 15:42:47
403
原创 Vue入门
本文摘要:快速入门Vue.js开发指南,内容包括环境搭建(Node.js/Vue CLI安装)、项目创建、目录结构说明,以及核心语法如数据绑定(v-html/v-text)、条件渲染(v-if/v-show)、列表渲染(v-for)等基础用法。通过代码示例演示了模板语法、属性绑定、JS表达式使用等关键知识点,适合初学者快速掌握Vue开发基础。
2025-07-15 10:25:37
265
原创 深度学习-传统机器学习算法部分汇总
本文介绍了深度学习回归模型和分类模型的评价指标,以及线性回归模型的基础知识。回归模型评价包括MAE、MSE、RMSE和MAPE;分类模型评价涵盖TP、TN、FP、FN等指标及准确率、精确率、召回率和F1值。线性回归部分通过案例说明如何通过最小化损失函数寻找最优参数,并展示了损失函数图像。代码示例演示了如何计算和可视化损失值随权重变化的情况。
2025-07-14 15:50:05
429
原创 深度学习-逻辑回归-从原理、公式推导到python实现简单案例
逻辑回归是一种用于二分类任务的机器学习模型,通过将线性回归结果映射到(0,1)区间(Sigmoid函数)实现概率预测。其核心包括:正反例概率表达式、似然函数、交叉熵损失函数以及梯度下降参数更新方法。实际应用中需对特征进行归一化处理以提高训练效率,并划分训练集/测试集。案例展示了从数据预处理到模型训练、评估的完整流程,包括Python代码实现关键步骤(数据读取、归一化、模型训练与测试)。最终通过概率阈值判定分类结果。该模型广泛用于医疗诊断等二分类场景。
2025-07-10 09:36:15
315
原创 深度学习-模型评价指标
文章摘要:本文介绍了监督学习中回归模型和分类模型的评价指标。回归模型评价指标包括MAE、MSE、RMSE和MAPE,用于衡量连续值预测误差。分类模型评价指标重点介绍了混淆矩阵中的TP、TN、FP、FN,以及准确率(ACC)、精确率(P)、召回率和F1值,特别指出在样本不平衡时ACC的局限性。通过肿瘤检测案例说明各指标的计算方法和适用场景,强调F1值是精确率和召回率的调和均值,能更好评估分类性能。
2025-07-09 20:16:37
660
原创 深度学习-线性回归:从算法公式推导到python实现简单案例
深度学习线性回归入门指南 本文介绍了深度学习中的线性回归基础知识,包括算法原理和Python实现案例。主要内容包括: 基本概念:解释了特征xi和标签yi的关系,以及权重w和偏置b的作用。 损失函数:介绍了平方误差损失函数J(x)的计算方法,用于衡量模型预测值与真实值的差距。 参数求解方法: 穷举法(适用于简单情况) 最小二乘法(通过矩阵运算求解) 梯度下降法(迭代优化参数) 实战案例:展示了使用Python实现线性回归的完整流程,包括数据准备、模型定义、损失计算、梯度下降训练和结果可视化。 注意事项:讨论了
2025-07-09 11:47:21
404
原创 CentOS7上搭建Hello-Java-Sec靶场踩坑以及解决
在CentOS7上搭建Hello-Java-Sec靶场时遇到两个主要问题及解决方案:1) Git克隆失败,通过生成SSH密钥对并添加到GitHub账户解决;2) Maven编译错误,发现yum安装的Maven版本过低,改用官网下载最新版(3.9.10)并配置环境变量后解决。其中详细记录了SSH密钥生成过程、Maven环境配置步骤以及创建软链接的方法,最终成功完成靶场搭建。
2025-06-20 17:12:43
439
原创 IA32架构的MASM
答:在子程序中使用寄存器,要先压入堆栈进行保护,使用完毕后再弹出,这是因为,子程序中直接使用寄存器会破坏其中的值,特别是这个寄存器如果在调 用者中还要再次使用,如果值被破坏,那么程序最后的执行结果就会出错。通过连续内存来存储分支的地址,减少了程序中各种转移指令的使用,不仅使程序可读性更强,同时分支可预测,在分支之间转移的时间少,利于流水线模式。 答: 传值:压入堆栈的是原变量的副本,在堆栈中不会影响原变量的值,影响的只是原变量的副本。函数指针中存放的是函数首条指令的地址,而汇编中调用函数就相当于。
2025-06-11 22:10:55
802
原创 记录docker配置nginx+php:7.3-fpm的过程和一些踩坑经历
因为在网上搜索了好多篇博客都未能彻底解决问题,所以才写了这篇博客用于记录自己的踩坑历程和用于日后参考;因为是解决问题之后才写的博客,文中的命令也许会有差错,欢迎在评论区指正写的不好,希望我的踩坑经历能够帮助到您,蟹蟹(。・ω・。)
2025-01-17 16:16:57
2496
原创 配置Docker+nginx时的纠错
错误原因:挂载的/data/docker/nginx/html:/usr/share/nginx/html中没有index.html。遇到的问题:一开始run nginx时访问云服务器ip可以正常显示nginx默认页面,但是进行目录挂载之后再访问就出现了403。供个人复习知识以及防止再出错用(被这个折磨了半天),若有错误不妥欢迎指正~ (。・ω・。)http块中没有server块,也就是说没有定义如何处理进入的 HTTP 请求。这样再测试就会发现原本能访问的nginx默认页变成403了。
2025-01-15 17:57:05
228
原创 upload-labs学习日志
如果直接上传php文件,会被过滤网页跳出弹窗显示报错,f12查看源代码发现文件格式过滤操作由一段js函数执行,我们可以通过禁用JavaScript绕过这段函数成功上传php文件。
2024-08-10 16:27:55
241
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人