Windows环境中Cursor远程访问QWQ32B模型的网络穿透技术应用

前言

本研究提出一种基于Windows系统的智能开发环境构建策略,通过集成Cursor代码辅助平台、Ollama模型部署架构及cpolar内网穿透工具,实现千问QwQ-32B大模型的私有化远程服务架构。该体系由三个核心单元构成:首先通过Ollama平台实现QwQ-32B模型的本地实施;其次构建符合OPENAI API标准的模型调用接口;最终运用内网穿透技术突破局域网限制,创建可远程访问的服务端。

在技术优化层面,Cursor作为主流AI编程工具存在两个固有局限:一是依赖公网模型接口进行交互;二是高频调用导致的运营成本增加。本方案采用双路径优化策略:首先通过本地部署方案确保数据隐私安全,所有代码分析与模型运算均在本地执行;其次借助隧道技术实现零成本的远程访问能力。

该架构具备三大应用价值:1)支持开发者在多场景间灵活切换,通过远程连接调用本地模型;2)在团队协作中有效防范代码泄露风险;3)为预算受限的开发团队提供经济型AI服务方案。通过Ollama的轻量部署、cpolar的穿透技术与Cursor的智能编辑功能的深度融合,最终形成兼顾安全性、成本控制和操作便捷性的智能开发系统。

1.安装Ollama

本例中使用的是Windows11系统专业版,通过Ollama运行Gemma3:27B大模型,之前曾经发布过如何在Windows安装Ollama的教程,有需要的同学可以看看这篇文章:Windows本地部署Deepseek-R1大模型并使用Web界面远程交互

简单来说,就是访问Ollama的官网:Download Ollama on Windows

image-20250408144901346

下载对应版本的ollama安装程序并安装:

image-20250408144936715

2.QwQ-32B模型安装与运行

在Ollama的官网点击Models,搜索qwq就可以看到模型:

image-20250307112159233

Ollama安装完成之后,就可以开始去下载 QwQ-32B 模型了,使用这个命令就能下载:

ollama run qwq

image-20250307113312147

ps:需要预留20个G以上的储存空间,默认下载到C盘,如果想修改下载位置,可以在终端中执行下方命令来指定模型文件的存放目录,这里以d:\ollama为例,大家可以自定义:

set OLLAMA_MODELS=d:\ollama

下载中,时间有点长,等待进度条完成即可,模型安装成功后会提示success,并可以进行提问了:

image-20250307141047982

3.Cursor安装与配置

访问cursor官网下载Windows版本: https://www.cursor.com/

image-20250429104747951

我这里下载的是Windows X64的0.48版本:

image-20250429111443579

下载后,按照提示一步步安装,如需创建桌面快捷方式,勾选即可:

image-20250429111822903

image-20250429111935159

点击完成后,第一次运行程序会弹出登录窗口:

image-20250429112251631

点击Sign UP注册一个账号登录:

image-20250429112735983

或者使用google或github账号登录,都可以:

image-20250429113159523

选择一个主题,点击继续:

image-20250429113504426

选择快捷键风格,点击继续:

image-20250429113709243

数据分享这里选择了私人模式进行演示,大家可以根据自己情况选择:

image-20250429113951626

给AI发送信息的语言选择简体中文:

image-20250429114222761

配置完毕后,既可看到Cursor的主界面了:

image-20250429114324732

4. 简单使用测试

现在我们就可以在右侧的输入框中选择好AI模型进行提问了,比如我这里要求他帮我写一个贪吃蛇小游戏:

image-20250429144907370

经过两次确认创建文件,并等待一小会儿后,AI就给我生成了两个文件(index.html和game.js),在将这两个文件保存在同一目录下,在浏览器中打开index.html就能看到贪吃蛇小游戏的界面了:

image-20250429145552171

image-20250429145618042

通过控制方向键也可以正常玩,不过这只是一个相当初级的版本,但是AI也提供了后续优化的建议,比如:

  • 添加游戏重启按钮

  • 调整游戏速度

  • 添加不同的难度级别

  • 添加音效

  • 添加暂停功能

image-20250429145703088

5. 调用本地大模型

在提问框旁边,我们能看到使用哪个大模型来辅助你编程的选择功能:

image-20250429150430127

不过刚才演示的是通过调用在线大模型来输出回答,现在我们来演示一下如何让Cursor调用我们刚才在本地部署的qwq-32b大模型来实现辅助开发。

要想实现这个功能,首先我们需要打开Cursor的左边栏,点击插件,搜索cline插件,并点击install进行下载:

image-20250429151632752

安装好之后,点击插件图标,选择使用我自己的api key:

image-20250429152135577

然后在API Provider中选择刚才安装的Ollama,模型地址默认http://localhost:11434,模型ID在勾选了要使用本地部署的qwq:latest后会自动填写,然后点击Let”go!

image-20250429152710678

配置完成后,点击cline插件下方的在编辑器中打开:

image-20250429154304095

在弹出的新输入框中,可以看到现在已经调用的是本地部署的qwq-32b(名称为qwq:latest)模型了!

image-20250429155717645

image-20250429155742461

提个要求测试一下:

image-20250429162220940

这次使用本地大模型生成的贪吃蛇小游戏不用自己创建文件夹了,自己在桌面上生成了一个目录:

image-20250429162927946

访问后同样可以看到游戏界面,并且这次还加上了重新开始按钮:

image-20250429162545708

但是同样也有一些BUG,需要后期进行完善与优化。

6. 安装内网穿透

但如果想要像文章开头说的那样,当和本地部署的大模型不在同一网络环境下,也能随时随地在线使用Cursor调用与本地部署的大模型辅助代码开发,那就需要借助cpolar内网穿透工具来实现公网访问了!接下来介绍一下如何安装cpolar内网穿透,过程同样非常简单,只需使用它为Ollama配置一个公网地址就可以了。

首先进入cpolar官网:

cpolar官网地址: https://www.cpolar.com

点击免费使用注册一个账号,并下载最新版本的cpolar:

image-20250307152003085

登录成功后,点击下载cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

image-20240319175308664

cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到配置界面,结下来在WebUI管理界面配置即可。

img

接下来配置一下 ollama 的公网地址:

登录后,点击左侧仪表盘的隧道管理——创建隧道,

  • 隧道名称:cursor(可自定义命名,注意不要与已有的隧道名称重复)
  • 协议:选择 http
  • 本地地址:11434
  • 域名类型:选择随机域名
  • 地区:选择China Top

image-20250429163719795

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https:

image-20250429163801421

使用上面的任意一个公网地址替换刚才我们在Cursor中的cline插件里填写的模型地址即可,这样一来就可以随时使用Cursor在线调用本地大模型来让AI辅助我们进行代码开发了!

image-20250429164214233

小结

为了方便演示,我们在上边的操作过程中使用cpolar生成的HTTP公网地址隧道,其公网地址是随机生成的。这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址是随机生成,这个地址在24小时内会发生随机变化,更适合于临时使用。

如果有长期远程使用Cursor调用本地模型辅助开发,或者异地访问与使用其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想让公网地址好看又好记并体验更多功能与更快的带宽,那我推荐大家选择使用固定的二级子域名方式来配置一个公网地址。

7. 配置固定公网地址

接下来演示如何为其配置固定的HTTP公网地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。

配置固定http端口地址需要将cpolar升级到专业版套餐或以上。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留:

image-20250429164619594

保留成功后复制保留成功的二级子域名的名称:mycursor,大家也可以设置自己喜欢的名称。

image-20250429164648974

返回Cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道:cursor,点击右侧的编辑:

image-20250429164727702

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名:mycursor

点击更新(注意,点击一次更新即可,不需要重复提交)

image-20250429164805089

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:

image-20250429164841474

最后,我们使用上边任意一个固定的公网地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地在线访问本地部署的大模型来使用Cursor辅助代码开发工作了!

image-20250429165003318

image-20250429170522159

总结

本方案的实施成果表明,在Windows系统中成功搭建了Cursor代码辅助平台与QwQ-32B大模型的本地化运行环境,并通过自定义插件实现了对本地模型的高效调用。为应对传统云服务依赖引发的经济负担和信息泄露风险,本研究创新性地采用隧道技术,有效突破了无公网IP场景下的远程访问瓶颈。经过多轮验证测试,该架构在保障开发效率的同时,显著优化了AI服务的经济性表现,具体体现为:1)数据本地处理机制彻底规避了信息外泄隐患;2)隧道技术替代了云服务计费模式,实现零成本远程访问;3)模块化架构设计显著提升了模型调用响应速度。对于追求灵活部署方案的开发团队,该技术路径提供了兼顾安全防护、成本控制与可扩展性的实践参考。欢迎就技术细节展开深入探讨。

### 关于 QwQ-32B 模型 API 的资料与使用方法 #### 创建本地服务器以暴露 QwQ-32B 模型 为了通过 API 与 QwQ-32B 进行交互,可以利用 FastAPI 或 Flask 构建一个本地服务器来暴露此模型。这一步骤允许其他应用或服务调用该模型的功能[^1]。 以下是基于 Python 和 FastAPI 实现的一个简单示例: ```python from fastapi import FastAPI, Request app = FastAPI() @app.post("/predict/") async def predict(request: Request): data = await request.json() input_text = data.get("input", "") # 假设此处有一个函数用于处理输入并返回预测结果 result = process_input_with_qwq32b(input_text) return {"output": result} def process_input_with_qwq32b(text): # 替换为实际的 QwQ-32B 处理逻辑 return f"Processed {text}" ``` #### 在线调试工具 Apifox 提供的支持 对于不想自行部署环境的开发者来说,Apifox 平台提供了便捷的方式,在线即可完成对 QwQ-32B 接口的调试工作。这意味着无需额外配置硬件资源或者安装复杂软件栈就能快速上手操作[^2]。 访问地址通常会包含类似如下结构的信息: `https://apifox.com/api/qwq32b/v1/generate?prompt=your_prompt_here&max_tokens=50` 其中 `your_prompt_here` 是您希望生成内容所依据的具体提示词;而参数 `max_tokens` 则定义了期望获得的最大令牌数量。 #### 温度数据获取及其他功能扩展 除了基本的文字生成功能之外,还可以进一步探索如何从 Ollama API 获取更多维度的数据比如“temperature”(温度),它反映了输出随机性的程度。合理设置这些超参有助于提升最终效果表现力以及满足特定应用场景需求[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值