LeetCode 701.二叉搜索树中的插入操作
1、题目
题目链接:701. 二叉搜索树中的插入操作
给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。
示例 1:
输入:root = [4,2,7,1,3], val = 5
输出:[4,2,7,1,3,5]
解释:另一个满足题目要求可以通过的树是:
示例 2:
输入:root = [40,20,60,10,30,50,70], val = 25
输出:[40,20,60,10,30,50,70,null,null,25]
示例 3:
输入:root = [4,2,7,1,3,null,null,null,null,null,null], val = 5
输出:[4,2,7,1,3,5]
提示:
- 树中的节点数将在 [0, 104]的范围内。
- -108 <= Node.val <= 108
- 所有值 Node.val 是 独一无二 的。
- -108 <= val <= 108
- 保证 val 在原始BST中不存在。
2、递归法
思路
这题说的是让在二叉搜索树中插入一个节点,最简单的一种方式就是插入到叶子节点。二叉搜索树的特点是左子树的值都小于当前节点,右子树的值都大于当前节点,并且左右子树都具有这个特性。 所以我们需要用插入的值val和根节点比较。
- 如果根节点为空,则创建一个新节点作为根节点并返回
- 如果val小于根节点,说明值为val的节点应该插入到root节点的左子树上
- 如果val大于根节点,说明值为val的节点应该插入到root节点的右子树上
然后再继续执行上面的操作,直到找到叶子节点为止,然后再把它插进去。就以题中示例为例画个图来看一下
代码
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
// 如果根节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。
if (root == nullptr) {
TreeNode* node = new TreeNode(val);
return node;
}
// 如果要插入的值小于根节点的值,则递归地在左子树中插入
if (root->val > val) {
root->left = insertIntoBST(root->left, val);
}
// 如果要插入的值大于根节点的值,则递归地在右子树中插入
else if (root->val < val) {
root->right = insertIntoBST(root->right, val);
}
// 如果要插入的值等于根节点的值,则直接返回根节点
return root;
}
};
复杂度分析
- 时间复杂度: O(n)
- 空间复杂度: O(n)
3、迭代法
思路
在迭代法遍历的过程中,需要记录一下当前遍历的节点的父节点,这样才能做插入节点的操作。
代码
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
// 如果根节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。
if (root == nullptr) {
TreeNode* node = new TreeNode(val);
return node;
}
TreeNode* cur = root;
// 用来记录上一个节点,否则无法赋值新节点
TreeNode* parent = root;
// 遍历二叉搜索树,找到插入位置
while (cur != nullptr) {
// 更新父节点为当前节点
parent = cur;
// 如果当前节点值大于要插入的值,向左子树查找
if (cur->val > val) {
cur = cur->left;
} else {
// 如果当前节点值小于要插入的值,向右子树查找
cur = cur->right;
}
}
TreeNode* node = new TreeNode(val);
// 根据父节点值的大小,确定新节点的插入位置
if (parent->val > val) {
// 如果父节点值大于要插入的值,将新节点插入为父节点的左子节点
parent->left = node;
} else {
// 如果父节点值小于要插入的值,将新节点插入为父节点的右子节点
parent->right = node;
}
// 返回根节点
return root;
}
};
复杂度分析
- 时间复杂度: O(n)
- 空间复杂度: O(1)