简介
Function Calling是语言模型在生成文本过程中调用外部函数或服务的能力,使模型不仅能"说"还能"做"。其工作流程包括函数定义、输入解析、生成函数调用、执行函数和整合输出。与传统API调用不同,Function Calling是大模型主动调用外部预定义函数。与MCP相比,Function Calling更适合单步即时任务,而MCP更适合长期多轮任务。应用场景包括实时数据查询、数据库操作、系统控制等。
在现代 AI 系统中,语言模型不仅可以生成文本,还可以直接调用外部功能或服务。这种机制被称为Function Calling。Function Calling 的原理、工作流程是什么?与 MCP(模型上下文协议)的区别又是什么呢?
在阅读正文前,可以先思考几个问题:
1.Function Calling 与传统 API 调用有何不同?
2.它的工作原理和执行流程是什么?
3.与 MCP 相比,它适合哪些场景?
1. 什么是 Function Calling
Function Calling 是指语言模型在生成文本的过程中,能够识别并触发外部函数或服务调用的能力。它将自然语言请求和结构化功能接口连接起来,让模型不仅能“说”,还能“做”。
Function Calling的流程可以简单看作:
用户输入问题或指令 → 模型生成文本或调用指令 → 执行对应函数 → 返回结构化结果 → 模型整合结果生成最终输出。
例如,当用户询问“当前的天气如何?”时,模型可以生成一个调用天气 API 的函数调用,而不是直接生成文本描述天气,从而获得实时、准确的结果。
2. Function Calling 的原理和工作流程
Function Calling 的核心在于模型对函数接口的理解和选择。基本流程如下:
1.函数定义
开发者将可用的函数或服务注册给模型,包括函数名称、参数、输入类型和输出类型。
2.输入解析
模型接收用户请求,理解意图,并判断是否需要调用外部函数。
3.生成函数调用
模型根据请求生成结构化的函数调用信息(如 JSON 格式),指定函数名称和参数。
4.执行函数
系统接收到函数调用后,执行对应函数,获取输出结果。
5.整合输出
模型将函数返回的结果整合到最终响应中,返回给用户或进一步处理。
这种机制允许语言模型不仅处理自然语言,还能直接与外部系统交互,形成闭环的智能操作流程。
3. Function Calling 与 MCP 的区别
Function Calling 和 模型上下文协议(MCP) 都涉及模型与外部功能交互,但侧重点不同:
特性 | Function Calling | MCP |
目标 | 语言模型直接调用具体函数 | 标准化代理调用工具/服务接口 |
接口方式 | 模型生成调用指令 → 系统执行函数 | 代理通过结构化协议请求工具功能 |
状态管理 | 一般无状态,每次请求单独执行 | 可以支持有状态、多轮任务交互 |
灵活性 | 面向函数级别的即时调用 | 面向工具级别的长期集成和生态构建 |
简而言之,Function Calling 更像是“模型内部的即时函数调用”,而 MCP 是“代理与外部工具的标准化接口”,两者可以结合使用:代理通过 MCP 集成工具,内部语言模型通过 Function Calling 调用具体函数,实现更智能的操作。
4. Function Calling 的使用场景
Function Calling 在实际应用中非常广泛,比如:
· 实时数据查询:调用天气、股票、交通等 API 获取最新数据。
· 数据库操作:根据自然语言查询数据库,返回结构化结果。
· 系统控制:通过语言指令控制智能家居设备或机器人。
· 自动化工作流:将模型生成的任务直接映射到函数或服务,实现任务闭环。
· 复杂计算:将数学、统计或逻辑计算委托给外部函数,提高准确性和效率。
最后,我们来看一下文章开头提出的三个问题:
1.Function Calling 与传统 API 调用有何不同?
Function Calling是大模型主动调用外部预定义函数,而API调用是程序内部行为,与外部大模型无关。
2.它的工作原理和执行流程是什么?
Function Calling通过模型生成函数调用请求,系统执行函数并返回结果,模型基于结果生成后续的对话。
3.与 MCP 相比,它适合哪些场景?
Function Calling 擅长处理“单步、即时、明确”的任务,而 MCP 更适合“长期、多轮、状态化”的工具或代理集成场景。
AI大模型从0到精通全套学习大礼包
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
01.从入门到精通的全套视频教程
包含提示词工程、RAG、Agent等技术点
02.AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线
03.学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的
04.大模型面试题目详解
05.这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓