- 博客(8)
- 收藏
- 关注
原创 【机器学习实战7】主成分分析(PCA)——人脸识别
PCA人脸识别的优势降维效果显著:PCA可以将高维的人脸图像数据降维到低维空间,大大减少了计算量和存储需求。特征提取直观:PCA提取的特征脸是基于人脸图像的全局信息,能够较好地反映人脸的主要特征。算法实现简单:PCA算法的实现相对简单,计算过程较为直观,易于理解和实现。
2025-06-16 14:25:32
686
原创 【机器学习实战6】基于SVM的垃圾邮件过滤器
在当今数字时代,电子邮件已成为我们日常生活和工作中不可或缺的通信工具。然而,随之而来的是大量垃圾邮件的困扰。这些未经请求的邮件不仅浪费了我们的时间,还可能带来安全风险。本文将分享如何使用支持向量机(SVM)技术构建一个高效的垃圾邮件过滤器,帮助我们从海量邮件中精准识别并过滤掉垃圾邮件。
2025-06-02 18:41:02
559
原创 【机器学习实战5】逻辑回归(Logistic Regression)
1.逻辑函数(Sigmoid函数)Logistic回归使用逻辑函数(也称为sigmoid函数)来将线性回归的输出映射到0和1之间,这个函数的表达式为:其中,z 是线性回归模型的输出(即输入特征和权重的线性组合加上偏置项),σ(z) 是预测事件发生的概率。2.损失函数Logisitic回归的损失函数通常使用对数似然函数(log-likelihood function),也称为交叉熵损失(cross-entropy loss)。对于二分类问题,损失函数可以表示为:其中:N 是样本数量。
2025-05-19 17:22:16
688
原创 【机器学习实战4】基于朴素贝叶斯分类器的西瓜数据集
优点:朴素贝叶斯分类器简单易实现,对小规模数据集表现良好,且对缺失数据具有一定的鲁棒性。局限性:朴素贝叶斯算法假设特征之间相互独立,这在实际应用中往往不成立,可能会影响分类效果。改进方向:可以尝试其他算法(如决策树、支持向量机等)进行对比,或者对特征独立性的假设进行放松,使用半朴素贝叶斯等更复杂的模型。
2025-04-29 23:32:38
920
原创 【机器学习实战3】CART和ID3决策树解决银行贷款问题
算法原理ID3 算法通过计算信息增益选择最优特征,适合生成多叉树,能够更细致地划分数据,但可能导致树的复杂度较高;CART 算法通过计算基尼指数选择最优特征,生成二叉树,结构简洁且易于理解和解释,但可能对某些特征的信息敏感度不足。模型的选择ID3 算法适合特征值较多、需要更细致划分数据的场景,而 CART 算法更适合需要生成简洁模型、便于解释的场景。在实际应用中,需要根据具体问题的需求和数据特点选择合适的算法。模型优缺点对比ID3 算法优点:简单直观,易于实现;能够有效地减少数据的不确定性。缺点。
2025-04-19 20:46:52
956
原创 机器学习 | 基于knn算法求pr曲线和roc曲线
模型评估是机器学习不可或缺的一环。在分类问题中,我们通常希望了解模型的预测能力,也就是评估该模型对正类别和负类别的分类结果。PR曲线和是用于评估二分类模型性能的重要工具,通过在不同阈值下的精确度、召回率和真正率、假正率之间的权衡,评估模型的性能。它们可以帮助我们在不同阈值下比较模型的性能,并选择最佳的阈值进行预测。本篇文章将通过KNN模型的PR和ROC曲线绘制,来展示如何进行模型性能评估。
2025-03-29 19:47:21
581
原创 【机器学习实战1】K-近邻算法---海伦约会
本文详细介绍 KNN 算法的完整实现过程,包括数据加载、归一化处理、算法实现、数据集划分、性能测试以及可视化展示。KNN算法虽然简单,但在许多实际问题中表现出色,尤其适用于数据分布较为明显的情况。通过本文的代码实现和实验,希望能帮助读者可以更好地理解KNN算法的工作原理及其在实际问题中的应用。
2025-03-24 21:01:37
881
原创 Anaconda下载安装教程
Anaconda是一个功能强大的Python发行版,是一个集成化的数据科学平台,它预装了Python解释器以及大量常用的数据科学库和工具,如NumPy、Pandas、SciPy、Matplotlib等。Anaconda还提供了一个名为Conda的包管理器,可以方便地安装、更新和卸载软件包及其依赖项,同时解决包之间的冲突,并且支持创建和管理不同的虚拟环境,允许用户在不同的项目中使用不同版本的Python和库。1.2 下载安装1.2.1下载网址。
2025-03-09 21:36:56
496
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人