自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(92)
  • 收藏
  • 关注

原创 云开发实战教程:手把手教你高效开发应用

云开发 Copilot 是由腾讯云开发团队推出的一款智能AI 开发辅助工具,旨在为开发者提供高效、便捷的应用开发体验。它通过自然语言处理和机器学习技术,能够快速生成多种类型的应用功能,涵盖了低代码应用、页面、组件、数据模型、CMS 内容等多个方面,能帮助开发者快速构建自己的小程序、web 等云开发应用。用户可以通过简单的指令或描述,快速获取所需功能的代码或配置,大大降低了开发门槛,加快了开发效率。初学者和资深开发者,都能从中受益,利用其强大的功能快速实现创意和业务需求。在云开发AI+

2024-11-25 01:37:54 15408 323

原创 调用蓝耘API打造AI 智能客服系统实践教程

在用户与人工客服的沟通中,等待时间长、需求难满足等问题频发,企业面临用户流失风险,用户渴望快速精准的答案,企业需要“开源节流”、“降本增效”。对此,利用 AI 大模型打造智能客服成为主流解决方案。本次将借助蓝耘 Maas 平台,调用大模型 API,实操构建一个具备知识库的 AI 智能客服系统,有效化解沟通难题。下面为大家做一个简要介绍。什么是MaaS平台?

2025-06-02 12:19:50 10640 141

原创 调用蓝耘Maas平台大模型API打造个人AI助理实战

大数据时代,个人隐私很难得到保障,如果我们需要借助大模型解决一些私人问题,又不想隐私被泄露和所用的大模型公司收集,这里我提供一个解决方案调用大模型的API实现一个本地化个人ai助理帮助我们解决问题,这是一个很好的解决办法。本次实验主要是借助蓝耘的Maas平台来调用大模型API,打造专属的AI助理。考虑到有些读者可能不了解Mass平台究竟是什么,这里做简单介绍。MaaS 平台即 “模型即服务”(Model as aService)平台,是一种依托云计算的人工智能服务模式。

2025-05-31 10:09:10 18231 222

原创 当分布式数据库遇上传统企业:为什么互联网良药成了 “苦药”?

最后,还是那句话:技术的选择要回归业务本质,而非追逐技术潮流。明白这个道理,我们就掌握了消除成见、翻越大山的核心奥义。怎么样?您的数据库选对了吗?

2025-05-21 19:07:49 9600 147

原创 GPUGeek携手ComfyUI :低成本文生图的高效解决方案

通过GPUGeek平台使用ComfyUI工作流实现文生图是一种高效、低成本且极具创意自由度的图像生成方式。从实际操作体验来看,GPUGeek平台的强大算力保证了ComfyUI能够快速且稳定地运行,即使是复杂的图像生成任务也能在较短时间内完成。ComfyUI的开源节点式操作界面,让我们能够充分发挥自己的创意,通过灵活组合不同节点和调整参数,实现多样化的图像风格和效果。但是对于初次接触ComfyUI的小白来说,需要一定时间来熟悉和掌握节点设置。

2025-05-14 19:01:01 6498 88

原创 突破算力瓶颈,GPUGEEK 平台助力大模型训练降本增效

在技术迭代加速的当下,复杂计算任务对算力要求不断攀升,个人开发者与中小企业面临设备性能不足、自建成本高昂的双重困境。GPUGEEK平台直击痛点,以高性价比算力、灵活服务与丰富资源脱颖而出:不仅配备充足高性能显卡与稳定节点,还支持按需计费、快速部署环境,并提供海量开发镜像与模型资源,同时开放学术站点加速服务。平台界面简洁直观,参数调节无需专业知识,大幅降低使用门槛。实际训练成果证明该平台可高效支撑复杂计算任务,为技术研究与应用落地提供可靠解决方案。

2025-05-14 18:11:37 6669 60

原创 【金仓数据库征文】金仓数据库:创新驱动,引领数据库行业新未来

在数字化转型的时代洪流中,数据已跃升为企业的核心资产,宛如企业运营与发展的 “数字命脉”。从企业日常运营的精细化管理,到战略决策的高瞻远瞩制定;从客户关系管理的深度耕耘,到供应链优化的全面协同,数据的影响力无处不在。数据库作为数据存储、管理与处理的关键中枢,其性能优劣、稳定性高低以及功能丰富与否,直接决定了企业数字化转型的成败。

2025-05-08 20:05:05 31758 79

原创 【金仓数据库征文】金仓数据库 KES 助力企业数据库迁移的实践路径

金仓数据库提供的 KDTS 和 KFS 两款迁移工具,分工明确、协同高效。KDTS 主要用于批量迁移存量数据,能够快速将现有数据完整迁移至新数据库;KFS 则专注于在线增量数据的实时迁移,确保数据库在运行过程中产生的新增、修改和删除数据能够及时同步到新数据库。两者配合使用,可实现 MySQL 数据库的不停机迁移。(二)迁移操作流程。

2025-05-08 19:39:16 32413 63

原创 亮数据与 AI 深度集成:构建电商策略自动化系统新范式

说实话,这次用亮数据搭配AI做电商营销方案,可谓是事半功倍。以前做数据采集,光是应付电商平台的反爬机制,就像在打一场永无止境的攻防战——IP动不动被封,代码改到崩溃,好不容易拿到的数据还乱糟糟的。亮数据与 AI 的深度集成,不仅解决了数据采集的效率与合规问题,更通过 AI 决策引擎将数据转化为可执行的商业策略,形成 “数据驱动策略,策略反哺数据” 的良性循环,这套电商决策自动化系统能够显著提升营销精准度与企业盈利能力,将为电商行业提供可复制的智能化转型模板。

2025-05-07 19:30:25 13397 68

原创 阿里云 Bolt.diy:一键开启全能开发,简单强大零门槛

Bolt.diy 是 Bolt.new 的一个开源版本,它提供了更高的灵活性和可定制性,通过自然语言交互简化开发流程,并提供全栈开发支持,同时允许用户二次开发。Bolt.diy是免费开源的全能开发神器,最大的优势就是简单易用。只要输入需求,就能自动匹配AI模型生成代码,从开发到上线一站式搞定,还能让AI自动查错、改错。平台界面直观,代码管理、部署操作方便,对新手和企业都很友好。不过偶尔会出现卡顿闪退,好在重新登录就能继续用。总的来说,这是个实用又强大的开发工具,要是稳定性再好些,绝对能成为开发者的首选。

2025-05-06 23:55:26 859 53

原创 告别C盘爆红,手把手教学彻底清理磁盘空间

总的来说用小番茄C盘清理软件一键式、一体化的 、全方位清理会比自己逐项清理更快捷、更加高效,而且能大大减少乱删、误删的风险。最后软件的下载地址放这里了,需要的自取。

2025-03-28 17:34:08 37502 312

原创 腾讯云大模型知识引擎x deepseek:打造智能服装搭配新体验

在利用腾讯云大模型知识引擎与 DeepSeek 搭建智能服装搭配应用的实践过程中,我收获颇丰。腾讯云大模型知识引擎的高效搭建能力令人赞叹。多种开发方式和预置插件,极大降低了应用搭建难度,让我能快速上手。其复杂知识处理技术,能精准解析服装搭配相关文档,为应用提供丰富知识支撑。完善的配套工具链支持从测试到反馈增强的一站式流程,在设置问答和优化应用时十分便捷,有效提升了开发效率。在应用搭建环节,选择 DeepSeek R1 模型为智能服装搭配提供了强大的推理能力。

2025-03-24 22:38:59 16470 272

原创 AIGC 新势力:探秘海螺 AI 与蓝耘 MaaS 平台的协同创新之旅

蓝耘MaaS平台作为企业级AI模型服务基础设施,以云服务形式为企业开发者、创业者及非技术背景用户提供预训练模型、行业定制化模型及配套工具链。其核心目标在于简化模型部署流程,实现资源弹性扩展,并针对金融、医疗、工业等垂直领域提供适配模型,降低企业应用AI技术的门槛。平台采用云原生架构,基于Kubernetes实现弹性资源调度,适配混合云/私有云部署,同时集成GPU/NPU算力池,优化推理效率,还提供联邦学习、隐私计算选项,保障数据隐私合规。

2025-03-24 00:00:32 2388 102

原创 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地

通义万相2.1和蓝耘平台结合后,为企业提供了强大的AI生成能力,极大提升了内容生产效率。无论是图像、视频,还是3D模型的生成,都能够在短时间内实现高质量输出,并且能够根据不同的行业需求进行灵活调整。

2025-03-12 09:31:49 15875 175

原创 云平台DeepSeek满血版:引领AI推理革新,开启智慧新时代

为了让更多的用户亲身感受这一革命性技术成果,云平台推出了免费Tokens的特权活动,让每一位用户都能够充分体验DeepSeek满血版的强大功能,并一同见证AI推理技术的突破性进展。作为AI领域的创新者与领航者,云平台始终走在技术前沿,凭借无穷的热情与智慧,致力于发掘AI的无限潜能,努力为全球用户描绘更加智能、高效、便捷的未来。为了支撑DeepSeek的强大功能,云平台为其配备了顶尖的计算资源,包括先进的GPU和CPU、优化的软件系统和分布式计算技术,确保推理任务能够迅速完成,推理效率得到极大提升。

2025-02-28 23:24:20 2481 138

原创 AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型

1.操作简单:整体操作流程较为简洁。用户只需根据阿里云提供的实操手册进行步骤操作,即可顺利完成API调用的配置和测试。对于熟悉阿里云产品的用户来说,界面非常熟悉,设置过程不会遇到过多的复杂步骤。5-8分钟左右可以搞定。2.易用性:手册详细说明了每个步骤的操作,用户只需按照提示逐步完成配置即可。通过百炼平台,用户能够轻松获得API-KEY并进行配置。对于没有使用过阿里云的用户,手册也提供了完整的指导,帮助用户顺利开始。3.用户友好性。

2025-02-18 17:09:22 273548 120

原创 Deepseek R1模型本地化部署+API接口调用详细教程:释放AI生产力

随着最近人工智能 DeepSeek 的爆火,越来越多的技术大佬们开始关注如何在本地部署 DeepSeek,利用其强大的功能,甚至在没有互联网连接的情况下也能进行高效的使用。事实上,DeepSeek 的技术实力已经不亚于 OpenAI 的 GPT 系列,因此许多人对其部署和应用产生了浓厚的兴趣。在这篇文章中,我将一步步带你完成本地 DeepSeek 部署的整个过程,确保你能够顺利地将其应用于你的工作或个人项目中。

2025-02-14 16:49:16 19915 87

原创 蓝耘云部署DeepSeek:释放AI生产力推动深度学习发展

蓝耘元生代智算云是一个前沿的智能计算平台,依托强大的算力资源和大规模GPU集群,具备卓越的并行计算能力,能够处理海量数据和复杂算法。平台搭载了智能调度系统,能够根据任务需求动态分配算力资源,确保高效利用计算资源,并大幅缩短任务执行时间。同时,平台提供多重数据备份和加密技术,有效保障用户数据的安全与隐私。在易用性方面,蓝耘元生代智算云的操作界面简洁直观,科研人员和企业开发者都能快速上手,轻松提交任务、监控进度并查看结果。

2025-02-10 15:09:01 7315 94

原创 算法 | 递归与递推

递归与递推(上)

2025-01-22 10:15:46 1666 19

原创 CapsNet :用于图像识别的神经网络结构,包含胶囊层

在传统的神经网络中,神经元的输出通常是一个标量值,表示某种特征的存在与否。而在胶囊网络中,胶囊是一个向量,每个向量的方向代表物体的姿态,长度表示物体存在的概率。胶囊的输出不仅代表特征的存在与否,还包含了关于该特征的空间信息。例如,针对一个图像中的某个物体,胶囊网络会通过向量来表示该物体的旋转角度、位置、大小等信息。我们将首先定义一个简单的胶囊网络。首先,我们定义卷积层来提取图像的低级特征。胶囊层的核心是通过动态路由机制来处理信息的传递。我们首先定义一个基本的胶囊层。# 定义权重矩阵,用于胶囊之间的连接。

2025-01-21 19:33:38 1421 27

原创 StyleGAN - 基于样式的生成对抗网络

StyleGAN是一种改进的生成对抗网络,它通过引入“样式”概念,使得生成图像的控制更加灵活。StyleGAN的核心思想是通过“映射网络”和“样式变换层”对生成器进行控制,以生成高质量、细节丰富的图像。与传统GAN的架构不同,StyleGAN采用了一个由“映射网络”和“样式变换层”组成的生成器结构。映射网络将输入的噪声映射到“样式”空间,而样式变换层则将样式信息引入生成器的每个卷积层,以控制生成图像的风格。更高的生成图像质量:通过引入样式控制和渐进式训练,生成的图像质量大幅提高,能够生成高分辨率的图像。

2025-01-21 19:24:12 2104 52

原创 DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN

深度卷积生成对抗网络(DCGAN,Deep Convolutional Generative Adversarial Network)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域,包括图像生成、风格迁移、图像修复等任务中,取得了显著的成果。本文将深入探讨DCGAN的工作原理、架构、

2025-01-21 08:40:25 2085 29

原创 GAN - 生成对抗网络:生成新的数据样本

生成器网络从随机噪声中生成图像,我们通常使用转置卷积(反卷积)来进行上采样。

2025-01-21 08:37:40 2668 56

原创 CycleGAN - CycleGAN网络:无监督图像到图像转换的生成对抗网络

CycleGAN是一种基于生成对抗网络(GAN)的无监督学习模型,旨在解决没有成对图像数据的图像到图像转换问题。其核心思想是通过引入循环一致性损失来确保生成的图像在转换回原始域时,能够保持与输入图像相同的结构信息。与传统的生成对抗网络不同,CycleGAN不需要成对的训练数据,它通过两个生成器和两个判别器来实现图像到图像的映射。生成器负责生成从源域到目标域的映射,判别器则用于判断图像是否来自目标域。为了确保映射的可靠性,CycleGAN还引入了“逆向”生成器,并通过循环一致性损失来确保图像的可逆性。

2025-01-20 20:04:16 2554 22

原创 Pix2Pix :用于图像到图像转换的条件生成对抗网络

Pix2Pix是一种条件生成对抗网络(Conditional GAN),其目标是从输入图像生成相应的输出图像。生成器和判别器。生成器:负责从输入图像生成目标图像。判别器:负责判断生成图像和真实图像之间的区别。Pix2Pix被广泛应用于图像到图像转换的任务,如图像修复、图像超分辨率、图像颜色化、图像风格迁移等。Pix2Pix网络在图像到图像的转换领域表现出色,尤其是在有条件数据的监督学习任务中。它不仅能够生成逼真的图像,而且通过对抗训练提高了图像质量。

2025-01-20 19:43:48 1965 43

原创 WGAN - 瓦萨斯坦生成对抗网络

WGAN的提出旨在通过引入Wasserstein距离来解决传统GAN中的上述问题。Wasserstein距离是一种度量两个分布之间距离的方法,它可以有效地避免传统GAN中存在的梯度消失问题,并且提供更加稳定的训练过程。WGAN的核心思想是在判别器中不使用标准的sigmoid激活函数,而是采用线性输出,并用Wasserstein距离来作为损失函数。Wasserstein距离的引入,使得生成器和判别器的训练变得更加平滑,且训练过程更为稳定。

2025-01-20 19:28:47 1610 26

原创 U-Net - U型网络:用于图像分割的卷积神经网络

在U-Net中,每个卷积块包括两个。

2025-01-20 11:18:02 5054 43

原创 DenseNet-密集连接卷积网络

DenseNet的核心思想是通过将每一层与前面所有层连接,增强网络中信息和梯度的流动。在传统的卷积神经网络(CNN)中,每一层仅依赖于前一层的输出作为输入。而在DenseNet中,每一层的输入不仅包括当前层的输出,还包括所有前面层的输出。

2025-01-20 10:45:13 2068 42

原创 MobileNet:轻量级卷积神经网络引领移动设备图像识别新时代

在当今数字化时代,移动设备已经成为人们生活中不可或缺的一部分,而图像识别技术在移动设备上的应用也日益广泛,如拍照识别物体、实时图像分类等。然而,传统的卷积神经网络(CNN)由于模型庞大、计算复杂,难以直接应用于资源受限的移动设备。MobileNet 的出现,犹如一股清新的春风,为移动设备上的图像识别带来了曙光,它以其轻量级的架构和高效的性能,开启了移动设备图像识别的新篇章。

2025-01-18 12:46:26 1401 36

原创 Inception 网络:开启多尺度卷积的图像识别新时代

在深度学习的璀璨星河中,卷积神经网络(CNN)无疑是一颗耀眼的明星,它在图像识别领域取得了前所未有的成就。而 Inception 网络作为 CNN 家族中的杰出代表,以其独特的多尺度卷积结构,为图像识别带来了全新的思路和突破,犹如一把神奇的钥匙,开启了图像识别的新时代大门。

2025-01-18 12:34:34 2672 51

原创 【Linux】常用指令详解二

介绍一些Linux常用命令

2025-01-17 13:16:55 2619 35

原创 VGG (Visual Geometry Group) :深度卷积神经网络的图像识别利器

在深度学习的蓬勃发展历程中,卷积神经网络(Convolutional Neural Network,CNN)为图像识别领域带来了革命性的突破。而 VGG(Visual Geometry Group)作为其中的杰出代表,凭借其简洁而高效的网络结构,在图像识别任务中展现出了卓越的性能,成为了深度学习领域的经典模型之一。

2025-01-17 11:37:46 1957 18

原创 ResNet (Residual Network) - 残差网络:深度卷积神经网络的突破

在计算机视觉领域,图像识别一直是一个核心且具有挑战性的任务。随着深度学习的发展,卷积神经网络(CNN)在图像识别方面取得了显著的成果。然而,随着网络深度的增加,出现了梯度消失或梯度爆炸等问题,导致网络性能下降,这被称为 “退化问题”。ResNet(残差网络)的出现,为解决这一难题提供了有效的方案,它通过引入残差连接,使得深度卷积神经网络能够更好地学习图像特征,显著提高了图像识别的准确率,成为了深度学习领域的重要里程碑。

2025-01-16 22:14:30 1378 30

原创 深入探究Linux树状目录结构

Linux 作为一款广泛使用的开源操作系统,其目录结构采用了树状设计,这种结构清晰、有条理,便于用户和系统进行文件管理与操作。

2025-01-16 09:01:10 3117 47

原创 深度学习核函数

1.Linear线性核函数执行内积操作,对输入数据不做任何变换,直接使用原始特征。2.线性核函数的优点在于简单和计算效率高,适用于特征丰富且样本量大的数据集。3.线性核函数适用于简单问题,能够保持模型的稳定性,避免过拟合(算法模型太复杂,泛化性低)。4.当样本数据量特别大时,线性核函数的计算量较小,速度较快。5.实时应用中,线性核函数因其简单和高效而常被首选。1.高斯核函数基于高斯分布(正态分布)2.一维高斯函数具有标准差和均值参数 3.二维高斯函数扩展到二维空间,控制高度。

2025-01-15 15:03:30 1334 38

原创 AlexNet:开启深度学习图像识别新纪元

它于 2012 年横空出世,并在 ImageNet 竞赛中一举夺冠,这一历史性的突破彻底改变了计算机视觉领域的发展轨迹,让全世界深刻认识到深度卷积神经网络在图像识别任务中的巨大潜力,从而掀起了深度学习研究与应用的热潮。同样,在卷积后进行偏置添加和 ReLU 激活。这一尺寸的确定是经过大量实验和权衡的结果,既能包含足够丰富的图像信息,又能在当时的计算资源和硬件条件下较为高效地进行处理。S4 层依旧是最大池化层,池化核大小为 3x3,步长为 2,对 C3 层的输出进行下采样,得到大小为 13x13 的特征图。

2024-12-11 19:26:21 1121 43

原创 探索 LeNet-5:卷积神经网络的先驱与手写数字识别传奇

它是由 Yann LeCun 等人在 1998 年提出的,虽然在今天看来它的结构相对简单,但它却为后来深度学习的繁荣奠定了坚实的基础,尤其是在手写数字识别这一经典任务上,LeNet-5 展现出了卓越的性能,成为了计算机视觉领域的一座重要里程碑。它是由 Yann LeCun 等人在 1998 年提出的,虽然在今天看来它的结构相对简单,但它却为后来深度学习的繁荣奠定了坚实的基础,尤其是在手写数字识别这一经典任务上,LeNet-5 展现出了卓越的性能,成为了计算机视觉领域的一座重要里程碑。

2024-12-11 19:22:56 1253 6

原创 GPT (Generative Pre-trained Transformer):开启自然语言处理新时代

OpenAI 研发的 GPT 系列模型横空出世,凭借先进的生成预训练 Transformer 架构,掀起 NLP 领域的变革风暴,重塑文本生成、对话系统、知识问答等诸多应用格局,成为全球学界与业界瞩目的焦点。GPT 预训练动用海量文本数据,涵盖互联网网页、书籍、学术论文、社交媒体等多元语料,数据清洗、去噪后,通过字节对编码(Byte-Pair Encoding,BPE)分词成子词单元,兼顾词法普遍性与罕见词捕捉,为模型提供丰富语义知识储备,奠定强大泛化基础。,模型最大化预测下一词概率,即。

2024-12-10 08:40:34 689 6

原创 T5 (Text-to-Text Transfer Transformer)基于 Transformer 的预训练模型详解

Transformer 架构掀起了 NLP 革命,Google 提出的 T5 模型更是在此基础上大放异彩,凭借独特的文本到文本框架,统一多种 NLP 任务,展现出强大的泛化与适应能力,成为学界、业界的重点关注对象。T5 预训练动用大规模多领域文本语料,涵盖维基百科、书籍、新闻文章等超万亿单词量,数据清洗、去重后经字节对编码(Byte-Pair Encoding,BPE)分词,将文本切分为子词单元便于模型学习词法、句法规律,提升泛化性,不同语种数据融合预训练赋予模型多语处理潜能。,模型最小化重构损失。

2024-12-10 08:35:32 1908 2

原创 探索机器学习之朴素贝叶斯分类算法

虽冠以 “朴素” 之名,看似简单,实则蕴含精巧数学逻辑与实用价值,是入门机器学习、攻克现实难题的得力工具。模型结构固定,难捕捉高阶特征交互。例如邮件分类,是邮件为垃圾邮件或正常邮件,是邮件内词汇、发件人等特征组合;试图借已知特征求属某类概率,即求解类别特征,贝叶斯定理搭建起特征与类别间概率桥梁。处理二值特征,如文本分类里词汇是否在文档现,特征仅(未现)、(出现)两值。训练数据稀疏时,部分特征与类别组合未现,致对应概率,乘积为零,预测失效。聚焦文本、计数特征,特征值是某元素出现次数,契合词频统计文本分类。

2024-12-09 10:00:26 920 4

HnVideoEditor_2025_05_07_135244879.mp4

HnVideoEditor_2025_05_07_135244879.mp4

2025-05-07

母亲节主题网页代码展示

母亲节主题网页代码展示

2025-05-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除