测试代码:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<style>
li {
list-style-type: none;
}
.one {
background-repeat: no-repeat;
background-size: cover;
}
.result {
width: 100%;
border: 4px aqua solid;
border-radius: 14px;
text-align: center;
}
.result ul {
display: flex;
flex-wrap: wrap;
justify-content: space-evenly;
align-content: space-evenly;
}
.result ul li {
position: relative;
border: 6px aquamarine solid;
border-radius: 12px;
margin-right: 10px;
margin-bottom: 10px;
padding-top: 30px;
}
.result ul li .title {
position: absolute;
top: 0;
left: 0;
color: purple;
font-weight: bold;
}
.result ul li .DownLoadbtn {
position: absolute;
bottom: 0;
left: 50%;
font-size: 20px;
transform: translateX(-50%);
color: rgb(255, 0, 162);
font-weight: bold;
}
</style>
</head>
<body>
<button onclick="openImage()">点击选择图片</button>
<input type="file" id="imageInput" style="display:none;">
<br><br>
<div style="border: 4px greenyellow solid;border-radius: 10px;">
<span style="vertical-align: top;">原始图像:</span>
<canvas id="show" width="0" height="0"></canvas>
</div>
<br>
<span>倍率:</span>
<input type="text" id="rateInput">
<button onclick="GetResult()">渲染</button>
<br><br>
<div class="result">
<h1>不同算法渲染结果:</h1>
<ul>
</ul>
</div>
<script>
const in1 = document.querySelector('#rateInput');
const orginPic = new Image();
const orginCanvas = document.querySelector('#show');
const originalCtx = orginCanvas.getContext('2d', { willReadFrequently: true });
const ul = document.querySelector('ul');
let rate = 1;//放缩倍率;
let w;//盒子宽度;
let h;//盒子高度;
let originalImageData; // 获取原始图像的像素数据
orginPic.onload = () => {
orginCanvas.width = orginPic.width;
orginCanvas.height = orginPic.height;
originalCtx.drawImage(orginPic, 0, 0, orginCanvas.width, orginCanvas.height);
// 获取原始图像的像素数据
originalImageData = originalCtx.getImageData(0, 0, orginPic.width, orginPic.height);
}
function CheckIsEqual(one, two) {//特异性检测;
let length = one.data.length;
for (let i = 0; i < length; i++) {
if (one.data[i] != two.data[i]) return false;
}
return true;
}
function GetResult() {//渲染按钮点击执行;
if (orginPic.src == '') {
alert("请先选择一张图片");
return;
}
ul.innerHTML = '';
rate = +in1.value;
w = rate * orginPic.width;
h = rate * orginPic.height;
//dataMes是为了测试用的,没什么用;
let dataMes1 = Draw();
let dataMes2 = NearestNeighbor();
let dataMes3 = Bilinear();
let dataMes6 = BicubicInterpolation();
let dataMes7 = SupersamplingAntiAliasing();
}
function createBtn(canvas, str) {
const btn = document.createElement('button');
btn.innerHTML = '下载'
btn.classList.add('DownLoadbtn');
btn.addEventListener('click', function () {
canvas.toBlob((blob) => {
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${str}.png`;
a.click();
URL.revokeObjectURL(url);
}, 'image/png');
})
return btn;
}
function openImage() {//从文件中打开图片;
document.getElementById('imageInput').click();
document.getElementById('imageInput').addEventListener('change', function () {
const file = this.files[0];
if (file && (file.type.startsWith('image/'))) {
const reader = new FileReader();
reader.onloadend = function () {
orginPic.src = reader.result;
};
if (file) {
reader.readAsDataURL(file);
}
}
});
}
function createLi(str) {
let li = document.createElement('li');
li.innerHTML = `<div class="title">${str}</div>`
ul.append(li);
li.style.width = w + 'px';
li.style.height = h + 40 + 'px';
return li;
}
function Draw() {
let li = createLi('canvas: ')
const canvas = document.createElement('canvas');
li.appendChild(canvas);
canvas.width = w;
canvas.height = h;
const rtx = canvas.getContext('2d');
rtx.drawImage(orginPic, 0, 0, w, h);
li.appendChild(createBtn(canvas, 'canvasDrawImg'));
return rtx.getImageData(0, 0, w, h);
}
function NearestNeighbor() {
let li = createLi('NearestNeighbor: ')
const canvas = document.createElement('canvas');
li.appendChild(canvas);
canvas.width = w;
canvas.height = h;
const rtx = canvas.getContext('2d');
// 调用最近邻插值缩放函数
const scaledImageData = nearestNeighborScale(originalImageData, w, h);
// 将缩放后的像素数据绘制到缩放后画布上
rtx.putImageData(scaledImageData, 0, 0);
li.appendChild(createBtn(canvas, 'NearestNeighborDrawImg'));
return rtx.getImageData(0, 0, w, h);
}
function Bilinear() {
let li = createLi('Bilinear: ')
const canvas = document.createElement('canvas');
li.appendChild(canvas);
canvas.width = w;
canvas.height = h;
const rtx = canvas.getContext('2d');
// 调用双线性插值缩放函数
const scaledImageData = bilinearScale(originalImageData, w, h);
// 将缩放后的像素数据绘制到缩放后画布上
rtx.putImageData(scaledImageData, 0, 0);
li.appendChild(createBtn(canvas, 'BilinearDrawImg'));
return rtx.getImageData(0, 0, w, h);
}
function BicubicInterpolation() {
let li = createLi('Bicubic-Interpolation: ')
const canvas = document.createElement('canvas');
li.appendChild(canvas);
canvas.width = w;
canvas.height = h;
const rtx = canvas.getContext('2d');
// BicubicInterpolation
const scaledImageData = bicubicScale(originalImageData, w, h);
// 将缩放后的像素数据绘制到缩放后画布上
rtx.putImageData(scaledImageData, 0, 0);
li.appendChild(createBtn(canvas, 'BicubicDrawImg'));
return rtx.getImageData(0, 0, w, h);
}
function SupersamplingAntiAliasing() {
let li = createLi('SSAA: ')
const canvas = document.createElement('canvas');
li.appendChild(canvas);
canvas.width = w;
canvas.height = h;
const rtx = canvas.getContext('2d');
// 定义超采样倍数
const supersampleFactor = 2;
// 创建高分辨率画布
const supersampledCanvas = document.createElement('canvas');
const supersampledCtx = supersampledCanvas.getContext('2d');
supersampledCanvas.width = w * supersampleFactor;
supersampledCanvas.height = h * supersampleFactor;
// 将原始图像绘制到高分辨率画布上
supersampledCtx.drawImage(orginPic, 0, 0, supersampledCanvas.width, supersampledCanvas.height);
// 获取高分辨率画布的像素数据
const supersampledImageData = supersampledCtx.getImageData(0, 0, supersampledCanvas.width, supersampledCanvas.height);
// 降采样
const scaledImageData = SSAA(supersampledImageData, w, h, supersampleFactor);
rtx.putImageData(scaledImageData, 0, 0);
li.appendChild(createBtn(canvas, 'SSAADrawImg'));
return rtx.getImageData(0, 0, w, h);
}
//#region 最近邻插值缩放函数
function nearestNeighborScale(imageData, newWidth, newHeight) {
// 创建一个新的图像数据对象,用于存储缩放后的像素数据
const newImageData = originalCtx.createImageData(newWidth, newHeight);
// 计算水平和垂直方向的缩放比例
const scaleX = imageData.width / newWidth;
const scaleY = imageData.height / newHeight;
// 遍历缩放后图像的每个像素
for (let y = 0; y < newHeight; y++) {
for (let x = 0; x < newWidth; x++) {
// 计算目标像素在原始图像中对应的位置
const srcX = Math.floor(x * scaleX);
const srcY = Math.floor(y * scaleY);
// 计算目标像素在原始图像数据数组中的索引
const srcIndex = (srcY * imageData.width + srcX) * 4;
// 计算目标像素在新图像数据数组中的索引
const destIndex = (y * newWidth + x) * 4;
// 将原始图像中对应像素的颜色值复制到新图像数据中
newImageData.data[destIndex] = imageData.data[srcIndex];
newImageData.data[destIndex + 1] = imageData.data[srcIndex + 1];
newImageData.data[destIndex + 2] = imageData.data[srcIndex + 2];
newImageData.data[destIndex + 3] = imageData.data[srcIndex + 3];
}
}
return newImageData;
}
//#endregion
//#region 双线性插值缩放函数
function bilinearScale(imageData, newWidth, newHeight) {
// 创建一个新的图像数据对象,用于存储缩放后的像素数据
const newImageData = originalCtx.createImageData(newWidth, newHeight);
// 计算水平和垂直方向的缩放比例
const scaleX = imageData.width / newWidth;
const scaleY = imageData.height / newHeight;
// 遍历缩放后图像的每个像素
for (let y = 0; y < newHeight; y++) {
for (let x = 0; x < newWidth; x++) {
// 计算目标像素在原始图像中对应的浮点坐标
const srcX = x * scaleX;
const srcY = y * scaleY;
// 计算四个相邻像素的坐标
const x0 = Math.floor(srcX);
const y0 = Math.floor(srcY);
const x1 = Math.min(x0 + 1, imageData.width - 1);
const y1 = Math.min(y0 + 1, imageData.height - 1);
// 计算插值因子
const dx = srcX - x0;
const dy = srcY - y0;
// 获取四个相邻像素的颜色值
const c00 = getPixelColor(imageData, x0, y0);
const c01 = getPixelColor(imageData, x0, y1);
const c10 = getPixelColor(imageData, x1, y0);
const c11 = getPixelColor(imageData, x1, y1);
// 对每个颜色通道进行双线性插值
const r = bilinearInterpolation(c00.r, c10.r, c01.r, c11.r, dx, dy);
const g = bilinearInterpolation(c00.g, c10.g, c01.g, c11.g, dx, dy);
const b = bilinearInterpolation(c00.b, c10.b, c01.b, c11.b, dx, dy);
const a = bilinearInterpolation(c00.a, c10.a, c01.a, c11.a, dx, dy);
// 计算目标像素在新图像数据数组中的索引
const destIndex = (y * newWidth + x) * 4;
// 将插值后的颜色值赋值给新图像数据
newImageData.data[destIndex] = r;
newImageData.data[destIndex + 1] = g;
newImageData.data[destIndex + 2] = b;
newImageData.data[destIndex + 3] = a;
}
}
return newImageData;
}
// 获取指定位置像素的颜色值
function getPixelColor(imageData, x, y) {
const index = (y * imageData.width + x) * 4;
return {
r: imageData.data[index],
g: imageData.data[index + 1],
b: imageData.data[index + 2],
a: imageData.data[index + 3]
};
}
// 双线性插值计算
function bilinearInterpolation(c00, c10, c01, c11, dx, dy) {
const r0 = (1 - dx) * c00 + dx * c10;
const r1 = (1 - dx) * c01 + dx * c11;
return (1 - dy) * r0 + dy * r1;
}
//#endregion
//#region 双三次插值
function bicubicScale(imageData, newWidth, newHeight) {
const newImageData = originalCtx.createImageData(newWidth, newHeight);
const scaleX = imageData.width / newWidth;
const scaleY = imageData.height / newHeight;
for (let y = 0; y < newHeight; y++) {
for (let x = 0; x < newWidth; x++) {
const srcX = x * scaleX;
const srcY = y * scaleY;
const r = bicubicInterpolate(imageData, srcX, srcY, 0);
const g = bicubicInterpolate(imageData, srcX, srcY, 1);
const b = bicubicInterpolate(imageData, srcX, srcY, 2);
const a = bicubicInterpolate(imageData, srcX, srcY, 3);
const destIndex = (y * newWidth + x) * 4;
newImageData.data[destIndex] = r;
newImageData.data[destIndex + 1] = g;
newImageData.data[destIndex + 2] = b;
newImageData.data[destIndex + 3] = a;
}
}
return newImageData;
}
function bicubicInterpolate(imageData, x, y, channel) {
const x0 = Math.floor(x);
const y0 = Math.floor(y);
let result = 0;
for (let j = -1; j <= 2; j++) {
for (let i = -1; i <= 2; i++) {
const px = Math.min(Math.max(x0 + i, 0), imageData.width - 1);
const py = Math.min(Math.max(y0 + j, 0), imageData.height - 1);
const weightX = cubicInterpolation(x - px);
const weightY = cubicInterpolation(y - py);
const index = (py * imageData.width + px) * 4 + channel;
const value = imageData.data[index];
result += value * weightX * weightY;
}
}
return Math.min(255, Math.max(0, Math.round(result)));
}
function cubicInterpolation(t) {
const a = -0.5;
const absT = Math.abs(t);
if (absT <= 1) {
return (a + 2) * Math.pow(absT, 3) - (a + 3) * Math.pow(absT, 2) + 1;
} else if (absT < 2) {
return a * Math.pow(absT, 3) - 5 * a * Math.pow(absT, 2) + 8 * a * absT - 4 * a;
}
return 0;
}
//#endregion
//#region SSAA算法;
function SSAA(supersampledImageData, newWidth, newHeight, supersampleFactor) {
const newImageData = originalCtx.createImageData(newWidth, newHeight);
const blockSize = supersampleFactor * supersampleFactor;
for (let y = 0; y < newHeight; y++) {
for (let x = 0; x < newWidth; x++) {
let rSum = 0;
let gSum = 0;
let bSum = 0;
let aSum = 0;
for (let j = 0; j < supersampleFactor; j++) {
for (let i = 0; i < supersampleFactor; i++) {
const srcX = x * supersampleFactor + i;
const srcY = y * supersampleFactor + j;
const index = (srcY * supersampledImageData.width + srcX) * 4;
rSum += supersampledImageData.data[index];
gSum += supersampledImageData.data[index + 1];
bSum += supersampledImageData.data[index + 2];
aSum += supersampledImageData.data[index + 3];
}
}
const destIndex = (y * newWidth + x) * 4;
newImageData.data[destIndex] = Math.round(rSum / blockSize);
newImageData.data[destIndex + 1] = Math.round(gSum / blockSize);
newImageData.data[destIndex + 2] = Math.round(bSum / blockSize);
newImageData.data[destIndex + 3] = Math.round(aSum / blockSize);
}
}
return newImageData;
}
//#endregion
</script>
</body>
</script>
</body>
</html>
运行效果如下图所示:
可以明显看到NearestNeighbor算法,对放大像素图,不失真,效果很好;