- 博客(1165)
- 收藏
- 关注
原创 提示工程101第十一课:提示链,提示工程入门到精通,收藏这篇就足够了!
本教程将介绍在使用大模型时的提示链(Prompt Chaining)与提示序列(Prompt Sequencing)概念。
2025-09-14 10:45:00
626
原创 提示工程101第十课:任务分解,提示工程入门到精通,收藏这篇就足够了!
本文将探讨在提示工程中任务分解(Task Decomposition)概念,重点介绍如何将复杂任务拆解为子任务,并将这些子任务以链式方式组织在提示中。
2025-09-14 09:45:00
618
原创 提示工程101第九课:角色提示,提示工程入门到精通,收藏这篇就足够了!
本教程探讨了AI语言模型中的角色提示概念,重点讲解如何为AI模型分配特定角色并编写有效的角色描述。
2025-09-14 08:15:00
366
原创 提示工程101第八课:受限与引导生成,提示工程入门到精通,收藏这篇就足够了!
本教程将探讨在 LLM 中如何实现“受限生成(Constrained Generation)”与“引导生成(Guided Generation)”的概念。
2025-09-14 07:15:00
260
原创 提示工程101第七课:自洽性&多路径推理,提示工程入门到精通,收藏这篇就足够了!
大语言模型(LLM)在面对复杂问题时,可能会输出不一致或不可靠的答案。通过引入多路径推理和结果聚合策略,可以增强模型输出的鲁棒性与准确性。
2025-09-13 10:15:42
511
原创 提示工程101第六课:思维链提示,提示工程入门到精通,收藏这篇就足够了!
随着 AI 语言模型的不断进步,人们越来越需要引导模型生成更加透明、逻辑清晰且可验证的输出。
2025-09-13 10:12:25
233
原创 提示工程101第五课:少样本学习与上下文学习,提示工程入门到精通,收藏这篇就足够了!
本文我们将探索少样本学习(Few-Shot Learning)和上下文学习(In-Context Learning)的前沿技术,这些方法使 AI 模型能够通过最少的示例执行复杂任务,革新了我们解决机器学习问题的方式。
2025-09-13 10:11:26
588
原创 提示工程101第四课:零样本提示(Zero-Shot Prompting)提示工程入门到精通,收藏这篇就足够了!
本教程将全面介绍零样本提示(Zero-Shot Prompting),这是一种强大的提示工程技术,使语言模型无需特定示例或预训练即可执行任务。
2025-09-13 10:09:44
366
原创 提示工程101第三课:提示模板和变量,提示工程入门到精通,收藏这篇就足够了!
随着 AI 语言模型的不断进步,设计有效的提示对于获取期望的输出至关重要。
2025-09-13 10:08:51
268
原创 提示工程101第二课:基础的提示结构,提示工程入门到精通,收藏这篇就足够了!
单轮提示适用于快速、直接的查询,而多轮提示则能够实现更复杂、具备上下文感知的交互。掌握这些结构可以提升 AI 在各种应用场景中的适用性和有效性。
2025-09-13 10:07:36
198
原创 提示工程101第一课:基础入门,提示工程入门到精通,收藏这篇就足够了!
本教程全面介绍了 AI 和 LLM(大语言模型)背景下的提示工程基础概念。旨在帮助学习者建立坚实的基础,掌握如何通过精心设计的提示与 LLM 高效交互,并充分利用其能力。
2025-09-13 10:06:40
391
原创 基于AI实现知识图谱的实战与原理解析,大模型入门到精通,收藏这篇就足够了!
在本文中介绍的项目,便能将非结构化文本转换为交互式知识图谱网页。此项目的所有代码都位于 AI-Knowledge-Graph 项目[1]存储库中。
2025-09-12 10:31:18
937
原创 深入解读大模型开发工具Dify--底层数据存储,大模型入门到精通,收藏这篇就足够了!
在探索 Dify 这个大模型开发工具时,了解其底层数据存储方式至关重要。这不仅关系到系统的性能、可扩展性和稳定性,还直接影响到数据管理、安全性以及如何优化应用的使用体验。
2025-09-12 10:30:30
945
原创 开发AI应用竟然如此简单?0基础入门就像炒菜一样轻松,大模型入门到精通,收藏这篇就足够了!
今天,假设以一个中药材病虫害识别小程序为例,带你一步步走完AI应用开发的全过程。无需高深数学基础,不用昂贵硬件设备,跟着这篇文章操作,你就能从零开始打造属于自己的智能应用!
2025-09-12 10:29:26
578
原创 大模型开发工具Dify:二次开发的实战指南,大模型入门到精通,收藏这篇就足够了!
在开源领域的激烈竞争中,Dify 脱颖而出,如今它在 GitHub 的 Workflows 主题排名中独占鳌头,收获了高达 87.5K 的 Star 数量。
2025-09-12 10:28:25
514
原创 后悔没早点读!这本《从零构建大模型》让我彻底搞懂大模型构建的每一步(附PDF)
在大语言模型(LLM)成为 AI 时代核心驱动力的今天,很多开发者和研究者都渴望理解其原理,并尝试自己动手训练一个大模型。
2025-09-12 10:05:23
858
原创 大模型入门超全指南来了!人大团队力作,内附一线开发经验
《大语言模型》一书由中国人民大学高瓴人工智能学院赵鑫教授和文继荣教授领衔主编,博士生李军毅、周昆和硕士唐天一参与编著,作者团队在大模型领域有着丰富的研究与开发经验,曾主导研发了文澜、玉兰等大模型。
2025-09-12 10:01:35
777
原创 大模型 “智慧骨架”,LLaMA架构介绍,大模型入门到精通,收藏这篇就足够了!
以LLaMA 为代表的模型是大模型主流架构Decoder-only的典型代表,相对于基础Transformer中的decoder模块,本文主要围绕LLaMA 结构的核心组成和主要变化点
2025-09-12 09:53:30
674
原创 LangGraph - 02:集成外部工具,增强 Agent 能力
在LangGraph中实现工具调用,主要围绕着以下三个核心概念。理解了它们,可以帮助我们掌握通过 LangGraph 实现 Agent 的工具集成。
2025-09-12 09:49:29
1035
原创 LangGraph - 01:编程入门,构建一个聊天机器人(附教程)
本文首先介绍 LangGraph 的一个编程入门示例:构建一个聊天机器人。通过该编程示例,可以帮助我们理解 LangGraph 的基本概念(节点、边、图)。
2025-09-12 09:48:04
690
原创 知识管理与 RAG 框架全景:从 LlamaIndex 到多框架集成
本篇文章就让我们来看一下 LlamaIndex和Haystack 这两个框架,我简单的介绍一下架构设计,以及多框架集成和知识库动态管理实践,同时提供示例代码帮助你快速理解并上手做自己的小demo。
2025-09-11 10:46:11
595
原创 认识 Unsloth 框架:大模型高效微调的利器,大模型入门到精通,收藏这篇就足够了!
Unsloth 是一个专为大语言模型微调设计的高效框架,它通过优化计算和量化技术,让用户在消费级硬件上也能快速、低成本地训练和部署模型。
2025-09-11 10:43:46
884
原创 大模型微调框架之LLaMA Factory,大模型入门到精通,收藏这篇就足够了!
LLaMA Factory 是一个开源的大模型微调与训练框架,主要围绕 Meta 发布的 LLaMA 系列模型 进行优化。
2025-09-11 10:41:32
788
原创 写给大模型新人的经验:刷到少走三年弯路!大模型入门到精通,收藏这篇就足够了!
今天这篇文章,我不打算讲那些泛泛而谈的大模型原理,我就站在一个“老转行人 + 老程序员 + 老训练营主理人”的角度
2025-09-11 10:32:20
672
原创 30天高效掌握AI大模型的系统学习计划,大模型入门到精通,收藏这篇就足够了!
2024年OpenAI吹响“大模型主导未来变革”的号角,掌握AI大模型技术已成为职业发展的关键突破口。本计划融合学习理论与实战路径,助您30天内系统掌握大模型核心技术。
2025-09-11 10:29:01
764
原创 AI老爱“瞎编”?给它请个RAG“私人秘书”,从此只说真话!大模型入门到精通,收藏这篇就足够了!
AI老爱“瞎编”?给它请个RAG“私人秘书”,从此只说真话!大模型入门到精通,收藏这篇就足够了!
2025-09-11 10:26:35
632
原创 从“最强大脑”到“超级员工”:大白话弄懂大模型、智能体和工作流
本文就用一个最接地气的“公司招聘”比喻,为你彻底捋清楚大模型、智能体和工作流这“三兄弟”的角色定位和真实本领。读完这篇,你就能像个内行一样,看懂AI的现在和未来。
2025-09-11 10:25:21
777
原创 30天快速入门AI大模型:从理论到实践的详细学习方案
本文将为你提供一个雄心勃勃但完全可行的计划:在一个月内,快速建立对AI大模型的系统性认知,并具备动手实践和应用开发的能力。
2025-09-11 10:23:57
649
原创 从普通程序员到大模型开发者:一份务实的学习路线,大模型入门到精通,收藏这篇就足够了!
本文提供一份务实的学习路线,帮助普通程序员系统性地过渡到大模型与智能体开发。
2025-09-11 10:21:29
700
原创 大模型微调实战教程(二):LLaMA-Factory 实战,从零开始构建微调数据集与模型评估体系
2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!
2025-09-11 10:19:41
560
原创 人人都该会写提示词(一):告别“AI小白”,为什么你与高手之间,只差一个高质量的提示词?
今天,我们将正式开启人人都该会写提示词系列。作为首篇文章,我将带你深入理解:究竟什么是提示词?为什么在 AI 时代,写好提示词是至关重要的能力?
2025-09-11 10:16:28
787
原创 全面解析 AI Agent,揭秘大模型如何拥有“手脚”,一文读懂 AI Agent 的核心机制与实战构建
本文将深入浅出地带你彻底搞明白这些问题,并通过具体的实例和代码,揭示 Agent 的神秘面纱。
2025-09-11 10:14:14
565
原创 LangGraph官方文档笔记——6.时间旅行
在典型的聊天机器人工作流中,用户与机器人交互 1 次或多次来完成任务。在前面的部分中,我们看到了如何添加记忆和人在回路功能,以便能够检查我们的图状态并控制未来的回复。
2025-09-10 10:17:21
838
原创 LangGraph官方文档笔记——5.自定义状态
到目前为止,我们依赖一个包含一个条目(消息列表)的简单状态。虽然这个简单状态可以走得很远,但如果您想定义复杂的行为而不依赖于消息列表,您可以向状态添加额外的字段。
2025-09-10 10:16:46
957
原创 LangGraph官方文档笔记——4.提示聊天机器人
Agent 可能不可靠,并且可能需要人工输入才能成功完成任务。因此,您可能希望在运行之前需要人工批准,以确保一切按预期运行。
2025-09-10 10:16:09
331
原创 LangGraph官方文档笔记——3.为聊天机器人添加记忆
我们的聊天机器人现在可以使用工具回答用户问题,但它不记得之前交互的上下文。这限制了其进行连贯的多轮对话的能力。
2025-09-10 10:15:33
737
原创 LangGraph官方文档笔记——2.使用工具增强聊天机器人
这里的案例使用的是Tavily搜索引擎工具,也就是说,给我们的聊天机器人配置好这个工具后,我们的机器人就可以按需求去在线搜索相关的信息来辅助回答。
2025-09-10 10:14:57
697
原创 LangGraph官方文档笔记——1.构建一个基础聊天机器人
LangGraph是基于LangChain的智能体编排框架,它将 Agent 系统建模设计为(有向图)流程图,每个节点表示一个计算步骤进行状态的更新,每条边表示状态转移路径,适合处理复杂流程或多Agent 协作系统。
2025-09-10 10:13:44
937
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人