无人机集群协同三维路径规划,采用冠豪猪优化器(Crested Porcupine Optimizer, CPO)实现,Matlab代码

基本介绍

无人机集群协同三维路径规划,智能优化算法优化大揭秘! Matlab 代码分享,不容错过! 算法威力惊人,同时规划六个无人机!无人机集群的目标函数即为总成本,总成本为6个无人机(UAV)成本之和,每个UAV的总成本由四部分构成(路径成本、威胁成本、高度成本和转角成本)。
冠豪猪优化器(Crested Porcupine Optimizer, CPO)是一种新型的智能优化算法,该成果于2024年发表在SCI期刊Knowledge-Based Systems上。CPO算法受到冠豪猪的防御机制和觅食行为的启发,通过模拟冠豪猪的视觉、听觉、气味和物理攻击等行为,实现了对优化问题的高效求解。CPO算法的核心在于其独特的搜索机制,包括觅食阶段、群体协作阶段和自卫阶段,这些阶段共同作用,使得算法能够在复杂的搜索空间中找到最优解。
在这里插入图片描述

代码功能

1. main.m (主程序)
  • 功能:无人机路径规划的主流程控制
  • 关键步骤
    1. 初始化环境(清除变量、添加工具箱路径)
    2. 创建地形模型(CreateModel)
    3. 获取优化问题参数(fun_info)
    4. 设置优化算法参数(种群大小100,迭代次数1000)
    5. 执行CPO优化算法
    6. 可视化路径规划结果和收敛曲线
  • 输出
    • 最优路径bestX
    • 收敛曲线convergenceCurve
    • 路径规划图
2. MyCost.m (成本计算)
  • 功能:计算无人机路径的4种成本
  • 成本构成
    1. 路径长度成本(J1) ∑ ∥ p i + 1 − p i ∥ \sum \| \mathbf{p}_{i+1} - \mathbf{p}_i \| pi+1pi
    2. 威胁成本(J2):基于点到威胁区域距离
    • 碰撞: J i n f = 1000 J_{inf}=1000 Jinf=1000
    • 危险区: ( r t h r e a t + d s a f e ) − d i s t (r_{threat} + d_{safe}) - dist (rthreat+dsafe)dist
    1. 高度成本(J3) ∑ ∣ z i − z m a x + z m i n 2 ∣ \sum |z_i - \frac{z_{max}+z_{min}}{2}| zi2zmax+zmin
    2. 平滑成本(J4):转弯角/爬升角变化惩罚
  • 加权总成本 c o s t = 1 ⋅ J 1 + 5 ⋅ J 2 + 1 ⋅ J 3 + 5 ⋅ J 4 cost = 1\cdot J1 + 5\cdot J2 + 1\cdot J3 + 5\cdot J4 cost=1J1+5J2+1J3+5J4
3. CreateModel.m (环境建模)
  • 功能:创建无人机飞行环境模型
  • 建模要素
    • 地形高程:H = 30*abs(peaks(1000))
    • 威胁区域:10个圆柱体障碍物(位置+半径)
    • 起止点:start=[160,60,50], end=[900,720,50]
    • 空间约束:
      • x∈[1,1000], y∈[1,1000], z∈[100,200]
    • 路径点数:n=10
4. Cost.m (多无人机成本聚合)
  • 功能:计算多无人机系统的总成本
  • 处理逻辑
    • 单目标模式:各无人机成本直接相加
    • 多目标模式:返回[总路径长, 总威胁成本]的Pareto前沿
  • 决策变量分割 X = [ X d r o n e 1 , X d r o n e 2 , . . . , X d r o n e N ] X = [X_{drone1}, X_{drone2}, ..., X_{droneN}] X=[Xdrone1,Xdrone2,...,XdroneN]
5. fun_info.m (问题定义)
  • 功能:定义优化问题参数
  • 关键参数
    • 决策变量维度: d i m = 3 × n × N dim=3 \times n \times N dim=3×n×N (N=6架无人机)
    • 变量范围:
      • r ∈ [ 0 , 2 ∥ P s t a r t − P e n d ∥ / n ] r \in [0, 2\|P_{start}-P_{end}\|/n] r[0,2∥PstartPend∥/n]
      • ψ , ϕ ∈ [ ϕ 0 ± π / 4 ] \psi, \phi \in [\phi_0 \pm \pi/4] ψ,ϕ[ϕ0±π/4] (方位角/俯仰角)
    • 目标函数:fobj = @(x)Cost(x,1)
6. SphericalToCart.m (坐标转换)
  • 功能:球坐标→笛卡尔坐标转换
  • 转换公式
    x = x_prev + r·cosψ·sinφ
    y = y_prev + r·cosψ·cosφ
    z = z_prev + r·sinψ
    
  • 边界处理:约束在模型空间范围内

逻辑关联图

main.m → 调用 → CreateModel (环境建模)
         │
         ├→ fun_info (问题定义)
         │
         └→ CPO优化器 → 重复调用 → Cost.m → 调用 → MyCost.m
                         │              │
                         │              └→ SphericalToCart (坐标转换)
                         │
                         └→ 输出 → plotFigure (结果可视化)

算法步骤 (CPO核心流程)

  1. 初始化

    • 在球坐标空间随机生成初始种群
    • 计算各粒子的适应度(MyCost)
  2. 迭代优化

    for gen in range(maxgen):
       更新粒子位置(球坐标空间)
       坐标转换(SphericalToCart)
       成本评估(Cost → MyCost)
       更新个体/全局最优解
       记录收敛曲线
    
  3. 结果提取

    • 获取全局最优解bestX
    • 转换为笛卡尔坐标路径
    • 可视化飞行路径

技术路线

球坐标参数化 → 群体智能优化(CPO) → 多成本加权评估 → 路径可行性验证

关键公式原理

  1. 威胁距离计算

    • 点P到线段AB的距离:
      d i s t = ∥ ( B − A ) × ( A − P ) ∥ ∥ B − A ∥ dist = \frac{\| (B-A) \times (A-P) \|}{\|B-A\|} dist=BA(BA)×(AP)
  2. 爬升角计算
    θ c l i m b = tan ⁡ − 1 ( Δ z Δ x 2 + Δ y 2 ) θ_{climb} = \tan^{-1}\left(\frac{\Delta z}{\sqrt{\Delta x^2 + \Delta y^2}}\right) θclimb=tan1(Δx2+Δy2 Δz)

  3. 转弯角计算
    θ t u r n = cos ⁡ − 1 ( v 1 ⃗ ⋅ v 2 ⃗ ∥ v 1 ⃗ ∥ ∥ v 2 ⃗ ∥ ) θ_{turn} = \cos^{-1}\left(\frac{\vec{v_1} \cdot \vec{v_2}}{\|\vec{v_1}\|\|\vec{v_2}\|}\right) θturn=cos1(v1 ∥∥v2 v1 v2 )

参数设定

参数类型参数名值/范围说明
环境参数MAP_SIZE1000×1000地形图尺寸
z_range[100,200]飞行高度范围
算法参数pop100种群规模
maxgen1000最大迭代次数
路径参数n10单无人机路径点数
N6无人机数量
成本权重b1,b2,b3,b41,5,1,5路径长/威胁/高度/平滑权重
物理约束ψ_max45°最大爬升角
φ_max45°最大转弯角

运行环境要求

  1. 软件环境

    • MATLAB R2023b
    • 自定义工具箱:muavbox
  2. 文件依赖

    main.m 
     └─ muavbox/ (自定义工具箱)
    

创新点

  1. 球坐标参数化:将3D路径规划转换为(r,ψ,φ)的优化问题
  2. 多成本联合优化:路径长度/威胁规避/高度保持/飞行平滑性
  3. 多机协同规划:6架无人机集群优化(决策变量维度=3×10×6=180)
  4. 地形融合:通过高程矩阵H实现真实地形建模
  5. 物理约束集成:转弯角/爬升角/飞行高度等现实约束

该解决方案实现了复杂地形下多无人机协同路径规划,通过群体智能算法在满足多种物理约束的前提下,优化飞行安全性和效率。

运行效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码内容

在这里插入图片描述
在这里插入图片描述

代码获取方式1私信回复无人机集群协同三维路径规划,采用冠豪猪优化器(Crested Porcupine Optimizer, CPO)实现,Matlab代码

代码获取方式2订阅组合优化专栏后即可获取无人机集群协同三维路径规划,采用冠豪猪优化器(Crested Porcupine Optimizer, CPO)实现,Matlab代

<think>嗯,用户让我详细介绍一下豪猪优化算法(Crested Porcupine OptimizerCPO)的原理及实现步骤。首先,我需要回忆一下这个算法的相关知识。好像这个算法是受豪猪的防御行为启发而来的群智能优化算法,属于元启发式算法的一种,类似于粒子群优化或者遗传算法。不过具体细节可能不太清楚,需要查阅相关资料或者论文。 首先,我需要确认这个算法的提出时间和相关作者。可能是在近几年的优化算法研究中提出的,模仿的是豪猪在面对威胁时的行为策略。豪猪会通过展示刺毛、发出声音、释放气味等方式来防御,这些行为可能被抽象成算法中的不同搜索策略。 接下来,关于原理部分,可能需要详细解释算法是如何模拟豪猪的这些行为的。比如,不同的防御阶段对应不同的搜索策略:初期可能更倾向于全局搜索,后期则转向局部开发。每个阶段的具体操作,比如如何调整步长,如何更新位置,如何平衡探索与开发等。 然后是算法的实现步骤。通常元启发式算法会有初始化种群、评估适应度、更新位置、迭代直到满足终止条件等步骤。CPO的具体步骤可能包括阶段判断(根据迭代次数或适应度变化)、不同防御策略的应用(如刺毛振动、声音威慑、气味扩散)、以及对应的位置更新公式。 可能需要考虑参数设置,比如种群大小、迭代次数、各阶段的切换条件,以及算法中的控制参数如何调整。例如,刺毛振动的幅度可能随着迭代次数递减,以平衡探索和开发。 还需要注意算法与其他优化算法的区别,比如CPO可能通过多策略切换来避免早熟收敛,提高全局搜索能力。同时,可能涉及到数学模型,比如位置更新公式中的随机因子、方向向量等。 在实现步骤中,可能需要伪代码或流程图的描述,但用户要求的是步骤说明,所以需要分点列出,详细解释每个阶段的操作。例如,初始化阶段如何生成初始解,评估阶段如何计算适应度,更新阶段如何根据当前阶段选择不同的策略,以及如何判断阶段转换的条件。 另外,可能需要提及算法的优缺点,以及适用的优化问题类型。例如,CPO可能在处理高维、多峰优化问题时表现较好,但计算成本较高或参数调节复杂等。 还要注意检查是否有相关的数学公式需要解释,比如位置更新的具体公式,如何结合当前最优解和随机扰动等。确保公式用LaTeX正确表示,符合用户给出的格式要求。 最后,总结CPO的核心思想,强调其仿生策略和全局局部平衡机制,以及在实际应用中的潜在价值。可能还需要提到与其他算法的对比,比如与粒子群优化、遗传算法等的不同之处。 过程中需要确保内容准确,避免错误信息。如果对某些细节不确定,可能需要查找相关论文或可靠来源进行确认,但根据当前的知识进行合理推测和解释,同时保持逻辑清晰和结构合理。</think>豪猪优化算法(Crested Porcupine Optimizer, CPO)是一种受豪猪防御行为启发的元启发式优化算法,通过模拟其**刺毛振动**、**声音威慑**和**气味扩散**三种防御策略,平衡全局探索与局部开发能力。以下是其原理及实现步骤的详细说明: --- ### **一、算法核心原理** #### 1. 仿生学基础 豪猪在遇到威胁时表现出分阶段的防御行为: - **阶段1(刺毛振动)**:竖起刺毛扩大体型威慑对手,对应算法的**全局搜索**。 - **阶段2(声音威慑)**:发出高频声音驱赶敌人,对应算法的**中等范围搜索**。 - **阶段3(气味扩散)**:释放刺激性气味标记领地,对应算法的**局部精细搜索**。 #### 2. 数学模型 - **阶段切换机制**:通过迭代次数或适应度变化动态调整搜索策略。 - **位置更新公式**: $$ X_{i}^{t+1} = X_{i}^t + \Delta X $$ 其中 $\Delta X$ 根据当前阶段选择不同策略计算: - **刺毛振动**:大范围随机扰动,如 $\Delta X = \alpha \cdot rand() \cdot (X_{best} - X_i^t)$。 - **声音威慑**:结合当前最优解与历史信息,如 $\Delta X = \beta \cdot (X_{best} - X_{i}^t) + \gamma \cdot (X_{j}^t - X_{k}^t)$。 - **气味扩散**:小步长局部调整,如 $\Delta X = \delta \cdot randn()$。 --- ### **二、实现步骤** #### 1. 初始化参数 - 设置种群规模 $N$,最大迭代次数 $T_{max}$。 - 定义阶段切换阈值 $\tau_1, \tau_2$(例如 $\tau_1=0.3T_{max}$, $\tau_2=0.7T_{max}$)。 - 初始化控制参数 $\alpha, \beta, \gamma, \delta$(通常随迭代衰减)。 #### 2. 种群初始化 随机生成初始种群位置: $$ X_i^0 = X_{min} + rand() \cdot (X_{max} - X_{min}), \quad i=1,2,...,N $$ #### 3. 迭代优化 **For** $t=1$ **to** $T_{max}$ **do**   1. 计算每个个体的适应度 $f(X_i^t)$,记录全局最优解 $X_{best}$。   2. **判断当前阶段**:     - 若 $t \leq \tau_1$,进入**刺毛振动阶段**(全局探索)。     - 若 $\tau_1 < t \leq \tau_2$,进入**声音威慑阶段**(中等搜索)。     - 若 $t > \tau_2$,进入**气味扩散阶段**(局部开发)。   3. **按阶段更新位置**:     - **刺毛振动**:大幅扰动个体位置,公式含高随机性。     - **声音威慑**:结合最优解与随机个体差异更新。     - **气味扩散**:基于当前最优解进行微调。   4. 边界处理,确保 $X_i^{t+1}$ 在搜索空间内。 **End For** --- ### **三、算法特点** 1. **动态平衡机制**:通过分阶段策略避免早熟收敛。 2. **多策略融合**:结合随机扰动、社会学习与局部开发。 3. **参数自适应**:控制系数 $\alpha, \beta$ 等随迭代次数递减,例如 $\alpha = \alpha_{max} - (\alpha_{max}-\alpha_{min}) \cdot t/T_{max}$。 --- ### **四、应用场景** - 适用于连续优化问题,如神经网络参数调优、工程设计优化。 - 在存在多个局部最优解的高维问题中表现优异。 --- ### **五、代码实现代码** ```python def CPO_optimizer(): initialize_population() X_best = find_best_solution() for t in 1 to T_max: for each individual X_i: if t <= tau1: update_position_phase1(X_i, X_best) # 刺毛振动 elif tau1 < t <= tau2: update_position_phase2(X_i, X_best) # 声音威慑 else: update_position_phase3(X_i, X_best) # 气味扩散 update_parameters() X_best = find_new_best() return X_best ``` --- ### **总结** CPO通过模拟豪猪多阶段防御行为,实现了**探索-开发权衡**的动态优化,其核心在于**分阶段策略切换**与**参数自适应机制**。实际应用中需根据问题特性调整阶段阈值和控制参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值