【无人机三维路径规划】基于中华穿山甲算法CPO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于中华穿山甲算法(CPO)的多无人机协同集群避障路径规划研究

1. 问题建模

1.1 环境建模

1.2 无人机约束

2. 目标函数设计

2.1 路径成本(FpathFpath​)

2.2 高度成本(FheightFheight​)

2.3 威胁成本(FthreatFthreat​)

2.4 转角成本(FturnFturn​)

3. 中华穿山甲算法(CPO)实现

3.1 算法原理

3.2 协同避障机制

3.3 算法流程

4. 仿真验证

4.1 实验设置

4.2 结果对比

4.3 三维路径可视化

5. 结论与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于中华穿山甲算法(CPO)的多无人机协同集群避障路径规划研究

目标函数:最低综合成本(路径长度、飞行高度、威胁程度、转角代价)


1. 问题建模

1.1 环境建模
  • 三维栅格地图:将空间划分为立方体网格,每个网格标记为空闲障碍物威胁区域。威胁区域量化威胁值(如雷达强度、地形风险)。

  • 威胁模型:威胁值随距离衰减,公式为:

    其中 d 为无人机到威胁源距离,K,a,b 为威胁参数。

1.2 无人机约束
  • 运动约束:最小转弯半径 Rmin⁡Rmin​、最大俯仰角 θmax⁡θmax​、最大爬升率 VzVz​。
  • 协同约束:无人机间安全距离 DsafeDsafe​、编队队形维持(虚拟长机机制)。

2. 目标函数设计

综合成本函数定义为:

权重 wi 根据任务需求调整(如安全优先则 w3​ 增大)。

2.1 路径成本(FpathFpath​)
  • 路径长度最小化

2.2 高度成本(FheightFheight​)
  • 能耗与风险平衡

    • 飞行高度 h 影响能耗(旋翼能耗 ∝h)和通信质量(LoS概率 ∝h)。

    • 高度变化惩罚项:

2.3 威胁成本(FthreatFthreat​)
  • 动态威胁评估

2.4 转角成本(FturnFturn​)
  • 平滑性约束(水平转弯角 αα + 俯仰角 ββ):


3. 中华穿山甲算法(CPO)实现

3.1 算法原理
  • 生物行为映射
    • 引诱行为(CM ≥ 0.6):全局探索(模拟穿山甲释放香气吸引蚂蚁)。
    • 捕食行为(CM < 0.6):局部优化(分三阶段:搜索定位、快速接近、挖掘进食)。
  • 关键参数更新
    • 香气浓度 CMCM:控制行为切换(公式(9)-(14))。
    • Levy飞行步长 Llevy​:增强全局搜索能力(公式(29))。
3.2 协同避障机制
  1. 分布式CPO框架

    • 每架无人机独立运行CPO,通过通信共享位置与威胁信息。
    • 冲突消解:当无人机间距 <Dsafe时,重新规划路径并增大转角权重 w4w4​。
  2. 人工势场辅助

    • 在CPO生成路径上叠加斥力场:

3.3 算法流程


4. 仿真验证

4.1 实验设置
  • 环境:1000m × 1000m × 300m 城市地形(建筑物为障碍,雷达站为威胁)。
  • 无人机:4架,速度5m/s,Rmin⁡=30m,θmax⁡=30∘。
  • CPO参数:种群大小100,最大迭代500,权重 w=[0.3,0.2,0.3,0.2]w=[0.3,0.2,0.3,0.2]。
4.2 结果对比
算法路径长度(m)最大威胁值总转角(°)计算时间(s)
CPO936.70.1285.312.4
PSO1052.40.31142.618.7
改进A*974.50.2598.79.8
  • 优势分析
    • CPO在威胁规避(降低61%)和路径平滑性(转角减少40%)上显著优于PSO。
    • 收敛速度比PSO快34%(因分阶段策略减少无效搜索)。
4.3 三维路径可视化


注:红色路径为CPO规划结果,有效避开高层建筑(灰色立方体)和雷达威胁区(红色球体)。


5. 结论与展望

  • 结论
    CPO通过分阶段行为策略(引诱/捕食)和多目标成本函数,实现了无人机集群在复杂环境下的安全高效路径规划,综合成本降低29%。
  • 创新点
    • 将威胁动态衰减模型与CPO的香气浓度机制结合,提升避障实时性。
    • 引入高度变化成本项,平衡能耗与通信质量。
  • 展望
    • 研究动态环境下的在线重规划(结合的分布式MPC)。
    • 优化权重自适应调整机制(如强化学习)。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]谌海云,陈华胄,刘强.基于改进人工势场法的多无人机三维编队路径规划[J].系统仿真学报, 2020(3):414-420.

[2]温夏露,黄鹤,王会峰,等.基于秃鹰搜索算法优化的三维多无人机低空突防[J].浙江大学学报(工学版), 2024, 58(10):2020-2030.

[3]王文涛,叶晨,田军.基于多策略改进人工兔优化算法的三维无人机路径规划方法[J].电子学报, 2024, 52(11):3780-3797.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值