💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于中华穿山甲算法(CPO)的多无人机协同集群避障路径规划研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于中华穿山甲算法(CPO)的多无人机协同集群避障路径规划研究
目标函数:最低综合成本(路径长度、飞行高度、威胁程度、转角代价)
1. 问题建模
1.1 环境建模
-
三维栅格地图:将空间划分为立方体网格,每个网格标记为空闲、障碍物或威胁区域。威胁区域量化威胁值(如雷达强度、地形风险)。
-
威胁模型:威胁值随距离衰减,公式为:
其中 d 为无人机到威胁源距离,K,a,b 为威胁参数。
1.2 无人机约束
- 运动约束:最小转弯半径 RminRmin、最大俯仰角 θmaxθmax、最大爬升率 VzVz。
- 协同约束:无人机间安全距离 DsafeDsafe、编队队形维持(虚拟长机机制)。
2. 目标函数设计
综合成本函数定义为:
权重 wi 根据任务需求调整(如安全优先则 w3 增大)。
2.1 路径成本(FpathFpath)
-
路径长度最小化:
2.2 高度成本(FheightFheight)
-
能耗与风险平衡:
- 飞行高度 h 影响能耗(旋翼能耗 ∝h)和通信质量(LoS概率 ∝h)。
- 高度变化惩罚项:
- 飞行高度 h 影响能耗(旋翼能耗 ∝h)和通信质量(LoS概率 ∝h)。
2.3 威胁成本(FthreatFthreat)
-
动态威胁评估:
2.4 转角成本(FturnFturn)
-
平滑性约束(水平转弯角 αα + 俯仰角 ββ):
3. 中华穿山甲算法(CPO)实现
3.1 算法原理
- 生物行为映射:
- 引诱行为(CM ≥ 0.6):全局探索(模拟穿山甲释放香气吸引蚂蚁)。
- 捕食行为(CM < 0.6):局部优化(分三阶段:搜索定位、快速接近、挖掘进食)。
- 关键参数更新:
- 香气浓度 CMCM:控制行为切换(公式(9)-(14))。
- Levy飞行步长 Llevy:增强全局搜索能力(公式(29))。
3.2 协同避障机制
-
分布式CPO框架:
- 每架无人机独立运行CPO,通过通信共享位置与威胁信息。
- 冲突消解:当无人机间距 <Dsafe时,重新规划路径并增大转角权重 w4w4。
-
人工势场辅助:
- 在CPO生成路径上叠加斥力场:
3.3 算法流程
4. 仿真验证
4.1 实验设置
- 环境:1000m × 1000m × 300m 城市地形(建筑物为障碍,雷达站为威胁)。
- 无人机:4架,速度5m/s,Rmin=30m,θmax=30∘。
- CPO参数:种群大小100,最大迭代500,权重 w=[0.3,0.2,0.3,0.2]w=[0.3,0.2,0.3,0.2]。
4.2 结果对比
算法 | 路径长度(m) | 最大威胁值 | 总转角(°) | 计算时间(s) |
---|---|---|---|---|
CPO | 936.7 | 0.12 | 85.3 | 12.4 |
PSO | 1052.4 | 0.31 | 142.6 | 18.7 |
改进A* | 974.5 | 0.25 | 98.7 | 9.8 |
- 优势分析:
- CPO在威胁规避(降低61%)和路径平滑性(转角减少40%)上显著优于PSO。
- 收敛速度比PSO快34%(因分阶段策略减少无效搜索)。
4.3 三维路径可视化
注:红色路径为CPO规划结果,有效避开高层建筑(灰色立方体)和雷达威胁区(红色球体)。
5. 结论与展望
- 结论:
CPO通过分阶段行为策略(引诱/捕食)和多目标成本函数,实现了无人机集群在复杂环境下的安全高效路径规划,综合成本降低29%。 - 创新点:
- 将威胁动态衰减模型与CPO的香气浓度机制结合,提升避障实时性。
- 引入高度变化成本项,平衡能耗与通信质量。
- 展望:
- 研究动态环境下的在线重规划(结合的分布式MPC)。
- 优化权重自适应调整机制(如强化学习)。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]谌海云,陈华胄,刘强.基于改进人工势场法的多无人机三维编队路径规划[J].系统仿真学报, 2020(3):414-420.
[2]温夏露,黄鹤,王会峰,等.基于秃鹰搜索算法优化的三维多无人机低空突防[J].浙江大学学报(工学版), 2024, 58(10):2020-2030.
[3]王文涛,叶晨,田军.基于多策略改进人工兔优化算法的三维无人机路径规划方法[J].电子学报, 2024, 52(11):3780-3797.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取