参考教程:Datawhale (linklearner.com)
教程内有很详细的讲解,这里就不过多赘述,主要分享一下个人的理解与体会
个人体会:
首先是夏令营方面,这次练习,主要让我学会了如何用魔塔对自己想要的图片进行生成,后面我也自己根据自己的prompt进行了训练生成,总体来说,本次任务不但让我熟悉了流程,也让我学会了如何根据自己的提示词,生成自己想要的图片。我也稍微似乎的了解了近年来,AI智能生成图片的底层代码。希望接下来的任务可以让我对这方面知识有更加充分的学习。
下面是个人生成的模型,大家可以去看一下哈
day1:
根据源文件生成的图片:
自己设置的prompt生成的图片:
图一:
torch.manual_seed(0)
image = pipe(
prompt="二次元,一间产房内,一个男孩顺利诞生,黑色短发的爸爸、黄色长发的妈妈和带着口罩的医生们脸上都洋溢着快乐的笑容",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("2-1.jpg")
图二:
torch.manual_seed(1)
image = pipe(
prompt="二次元,一个黑色短发的小男孩看到了一只在大树上脱壳的蝉,脸上充满了好奇,而他的爸爸在旁边开心的看着这个小男孩",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("2-2.jpg")
图三:
torch.manual_seed(2