自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(37)
  • 收藏
  • 关注

原创 《数据库系统概论》 第二章 关系模型通识讲下半部分

关系代数摘要 关系代数分为两类运算: 传统集合运算:基于行操作,要求关系同结构 并(∪):合并两关系所有元组 差(-):求R特有元组 交(∩):求共同元组 笛卡尔积(×):生成所有元组组合 专门关系运算: 选择(σ):行筛选 投影(π):列筛选+去重 连接(⋈):合并相关元组,含等值/自然/外连接 除(÷):筛选包含某关系所有元素的元组 核心特点是运算对象和结果都是关系,支持多级组合查询。

2025-09-09 18:27:04 778

原创 《数据库系统概论》 第二章 关系模型通识讲上半部分

关系模型以二维表为核心数据结构,主要包含三类完整性约束:实体完整性(主属性非空)、参照完整性(外码引用有效)和用户定义完整性(语义约束)。关系操作分为查询(选择、投影等5种基本操作)和数据更新两类,采用集合操作方式。关系模式描述关系结构(静态),而关系是动态数据。关系数据库由关系集合构成,其物理存储可通过文件系统或自行管理。关系语言分为代数、演算(元组/域)和混合(如SQL)三类。

2025-09-09 18:26:04 747

原创 《数据库系统概论》第一章 初识数据库

本文系统介绍了数据库系统的基础知识。首先阐明了数据、数据库、数据库管理系统和数据库系统四个核心概念,以及数据管理技术的发展历程;其次详细解析了数据模型的分类(概念模型、逻辑模型、物理模型)、概念模型要素(实体、属性、联系等)和E-R图表示方法,并比较了层次、网状、关系三种逻辑模型的优缺点;最后重点阐述了数据库系统的三级模式结构(外模式、模式、内模式)和二级映像机制,说明其如何实现数据的逻辑独立性和物理独立性。全文内容全面系统,是数据库领域的入门基础。

2025-09-09 16:50:47 748

原创 2025 Data Whale x PyTorch 安装学习笔记(Windows 版)

Pytorch安装

2025-07-19 12:43:47 749

原创 2025Data Whale x Pytorch基础知识

本文为PyTorch学习笔记,涵盖张量操作、自动求导机制及并行计算方法,附代码示例,助快速掌握。

2025-07-19 12:18:20 848

原创 Python商务数据分析——Matplotlib 数据可视化学习笔记

用于复习

2025-06-29 11:53:03 1033

原创 Python商务数据分析——CHAPTER4-Pandas 数据分析全攻略

()

2025-06-29 11:37:39 857

原创 ERP原理及应用——第一章ERP概述知识点

ERP系统的发展与核心特点 ERP(企业资源计划)是一种集管理思想、软件产品和管理系统于一体的资源整合工具,其核心特点包括市场导向、流程集成、财务业务一体化及灵活生产模式。ERP的演变经历了从MRP(物料需求计划)、闭环MRP(增加能力计划)到MRPⅡ(集成财务模块),最终发展为覆盖供应链全流程的ERP系统。未来趋势将向管理范围扩展(商业智能、流程管理)、技术融合(云计算、大数据)和敏捷化转型发展。关键差异在于:MRP聚焦物料需求,闭环MRP引入能力反馈,MRPⅡ整合财务,而ERP实现供应链全流程管理。

2025-06-25 14:26:26 558

原创 Java数据结构——线性表Ⅲ

构建 n 个结点的循环单链表。√(预先分配空间无浪费)×(动态分配反而效率低)

2025-06-24 22:00:27 671

原创 Java数据结构——线性表Ⅱ

数据域 data:存储元素值,采用泛型 E 实现类型通用化指针域 next:指向下一结点,形成单向链表链构造方法重载:提供无参(初始空结点)和有参(初始化数据)两种构造方式。

2025-06-24 21:53:36 909

原创 Python 商务数据分析—— NumPy 学习笔记Ⅱ

本文系统介绍了NumPy数组的核心操作技术,主要包含六大模块内容:1)数组索引与切片(四种索引方式及示例);2)元素操作(替换与条件处理);3)广播机制(原则与兼容性判断);4)形状操作(叠加/切割/转置);5)Axis轴概念解析(本质与运算示例);6)销售数据综合实战(三维数据聚合计算)。全文通过代码示例详细演示了每种操作的具体实现,重点解析了广播规则、轴方向运算等难点,最后通过销售数据案例展示了多维数组的实际应用。掌握这些核心操作可有效提升数组数据处理效率。

2025-06-23 11:14:32 496

原创 Python 商务数据分析—— NumPy 学习笔记Ⅰ

NumPy是高性能科学计算库,专为多维数组设计,采用C语言实现,运算速度远超Python列表。主要特性包括矢量运算、广播机制和丰富的数学函数库,广泛应用于数据分析、机器学习和科学计算领域。核心数据结构ndarray要求元素类型一致,支持高效向量化运算。创建数组方式多样,包括从列表/元组转换(np.array)、生成序列(np.arange)、随机数组(np.random)以及特殊函数(zeros/ones等)。数组支持多种数据类型(dtype)和维度操作(reshape/flatten),特别适合处理三维数

2025-06-22 20:45:09 1074

原创 Python商务数据分析——Python 入门基础知识学习笔记

Python语言特性与应用摘要 Python作为解释型、动态类型的编程语言,具有语法简洁、面向对象等特点,广泛应用于数据分析、AI、Web开发和自动化脚本等领域。其核心语法包括:1) 7种基本数据类型(分可变与不可变两类);2) 运算符优先级规则;3) 字符串处理常用方法。流程控制强调if多分支优化和for/while循环的选择。函数参数传递机制因数据类型而异,数据容器操作需区分列表/元组/字典/集合。文件操作推荐使用with语句,异常处理需分层捕获。面向对象编程涵盖封装/继承/多态三大特性,通过方法重写实

2025-06-22 20:18:05 793

原创 Java数据结构——线性表Ⅰ

本文系统介绍了线性表及其顺序存储结构(顺序表)的核心知识与应用。主要内容包括:1. 线性表的基本概念与抽象数据类型定义,包含11种基本运算;2. 顺序表的存储结构实现,重点讲解动态扩容机制及插入、删除等操作的O(n)时间复杂度分析;3. 典型算法如元素逆置(双指针法)、区间删除(划分法)、有序表合并(归并法)的实现与优化;4. Java ArrayList容器的使用方法与三种排序方式(Comparable、Comparator、Lambda);5. 考研真题及典型例题解析,包含中位数查找、多字段排序等实用场

2025-06-19 19:15:22 956

原创 Java数据结构——第一章Java基础回顾

本笔记系统梳理Java基础,涵盖基本数据类型、引用类型、参数传递等核心内容,适合有基础者复习巩固。

2025-06-19 18:56:22 450

原创 统计学(第8版)——第一至第三章基础概念(选择判断题)

没多少重点,有印象就行

2025-06-15 15:27:16 585

原创 《一元线性回归:从基础到应用及模型处理》

摘要: 本文系统阐述了变量间的相关关系与一元线性回归分析。首先区分了函数关系与统计相关关系,并介绍了相关系数的计算与解释标准(如|r|≥0.8为高度相关)。其次,详述一元线性回归模型的构建,包括最小二乘估计(OLS)方法、参数估计公式(如斜率系数b₁=Σ(Xi-X̄)(Yi-Ȳ)/Σ(Xi-X̄)²)及模型假设(线性、正态性、同方差性)。通过10家厂商的投入产出案例,演示了回归方程(Ŷ=15.8004+1.1818X)的计算过程。最后,探讨了模型检验方法,包括总平方和分解(SSTO=SSR+SSE)、拟合

2025-06-15 15:12:12 1008

原创 统计学(第8版)——方差分析Ⅰ(考试用)

一、方差分析的基本概念与原理。

2025-06-11 19:46:07 804

原创 统计学(第8版)——统计学基础统计抽样与抽样分布(考试用)

本文系统梳理了统计学抽样理论中的核心符号与分布体系。首先区分了参数(如总体均值μ、方差σ²)和统计量(如样本均值x̄、方差s²)的符号表示,进而详细介绍了四大重要概率分布:正态分布N(μ,σ²)的概率密度函数与标准化转换、卡方分布χ²(n)的定义与单总体应用、F分布的双总体方差检验应用、以及t分布的小样本推断特性。文章还阐述了样本均值的抽样分布公式,包括无限总体和有限总体修正情形,并说明了大数定律的概率收敛性和中心极限定理的正态近似条件。最后通过速查表归纳了关键统计符号及其专业领域,为抽样分析提供系统的符号

2025-06-11 19:25:02 1093

原创 统计学(第8版)——参数估计(考试用)

参数估计是通过样本数据推断总体参数的方法,分为点估计和区间估计。点估计用单一数值估计参数,需满足无偏性、一致性、有效性和罗-克拉美不等式等标准,常用矩估计和最大似然估计法。区间估计给出参数的可能范围及置信度,根据总体分布和样本量选择不同统计量(如Z、t、χ²、F分布)构建置信区间。对单一总体,可估计均值、方差和比例;对两个总体,可比较均值差、方差比和比例差。通过具体公式和案例(如英语成绩对比),展示了不同场景下的参数估计应用。

2025-06-10 09:52:14 1303

原创 统计学(第8版)——假设检验学习笔记(考试用)

错误类型符号定义概率控制典型场景第一类错误αH₀为真时拒绝 H₀(弃真)主动设定 α=0.05/0.01医疗误诊(α 需严格控制)第二类错误βH₀为假时接受 H₀(取伪)通过增大 n 降低 β质量检验漏检(β 需控制)

2025-06-09 22:08:34 1574

原创 统计学(第8版)——统计抽样学习笔记(考试用)

每个容量为nnn的样本被抽中的概率相同,样本独立无关联。

2025-06-09 19:08:01 728

原创 DataWhale 决策树学习笔记(西瓜书+南瓜书解析)

决策树的基本结构决策树采用树状结构进行决策判断,每个内部节点对应一个属性测试,分支代表测试结果,叶节点存储分类结果。

2025-03-24 21:23:46 667

原创 DataWhale西瓜书+南瓜书第3章《线性判别分析》

想象你是一所学校的校长,要把学生分成不同的班级。:LDA是分类和降维的瑞士军刀,但记得先检查数据是否“听话”(正态分布+同协方差)哦!(班级之间疏远):计算两班平均身高体重的差值向量(比如男生平均比女生高10cm)。:让同类学生坐得近(比如学霸坐前排),不同类学生离得远(比如学渣和学霸分开坐)。:找到一条最佳“走廊”(投影方向),让穿过走廊后,不同班级的学生尽可能不重叠。(班级内部团结):计算每个班学生的协方差矩阵(类似座位密集程度)。———— 这就是最佳分班走廊的方向!

2025-03-22 01:01:37 899

原创 DataWhale南瓜书第3章——对数几率回归部分重点

这种映射使模型在高维特征空间中保持线性计算复杂度。该函数将不同类别标签统一到指数形式表达[对应的对数几率函数为。

2025-03-18 22:17:59 720

原创 DataWhale线性回归部分重点————南瓜书第三章

yXβεyXβεX:n×(p+1)设计矩阵(含截距项)β:(p+1)×1参数向量ε:误差向量(ε∼N0σ2Iε∼N0σ2I。

2025-03-15 23:15:21 991

原创 企模数智沙盘部分思路

具体情况具体分析

2025-03-15 20:50:06 380

原创 DateWhale猫咪也能看懂的南瓜书第一二章核心原理精要25-03-12

假设空间HH是算法可选择的预测函数集合。HhxwTxb∣w∈Rdb∈RHhxwTxb∣w∈Rdb∈R其中权重向量www和偏置项bbb构成参数空间Θ\ThetaΘ。

2025-03-12 19:15:56 1050

原创 猫咪也能看懂的南瓜书——第一章

x₁=银鱼闪光度/x₂=秋刀鱼腥气浓度/x₃=罐罐开合难度…:用尾巴画直线就能把喜欢/讨厌的罐罐分两边~【荧光笔突然画出毛线球轨迹】:昨天吃的金枪鱼罐头在(0.7, 0.2, 0.05)闪闪发光喵!:允许有3%的沙丁鱼碎掉到错误区域喵~【某页公式突然被舔出小洞】:藏着尾巴蓬松度/瞳孔收缩率等137项隐藏指标(=´∇`=)「是所有可能存在的乖巧猫咪队列喵~」突然用犬齿轻咬公式边缘。:这边堆满会让瞳孔放大的三文鱼慕斯罐(♡´౪`♡)【(ノ*・ω・)ノ 扑向三维坐标系的全息投影】【(ฅ´ㅂ`ฅ) 肉垫在。

2025-03-12 19:15:09 489

原创 聪明办法学Python丨202409TASK1学习笔记

Mini Conda自带的conda包管理器,使我能够轻松管理和切换不同的Python环境,这对于避免依赖库之间的冲突问题极为有用。Python凭借其简洁明了的语法与强大的功能性,迅速吸引了我的注意。Python的设计理念强调代码的可读性与简洁性,在我编写代码的过程中得到了充分的体现。总的来说,Python的学习不仅提升了我的技术能力,更让我感受到了编程的乐趣。它不仅是一门语言,更是连接现实世界与数字世界的桥梁,为我的日常生活带来了诸多便利。随着学习的深入,我相信Python将成为我探索未知的强大工具。

2024-09-16 20:55:13 485

原创 Datawhale X 李宏毅苹果书 AI夏令营TASK3学习笔记

就是当我们训练模型的时候怎么样把loss调得合适些,也就是教我们如何优化自己的模型。接下来简单讲述一下我的理解。嘤嘤嘤,希望我的笔记能对你学习深度学习带来帮助❤。

2024-08-28 18:43:31 1144

原创 Datawhale X 李宏毅苹果书 AI夏令营TASK2学习笔记

在TASK1中简单了解了一下机器学习所具备的三个关键要素和实际应用,在TASK2中更近一步地了解在构建模型中的优化方案。

2024-08-27 10:20:37 1707 1

原创 Datawhale X 李宏毅苹果书 AI夏令营TASK1学习笔记

通过本次学习,我了解到机器学习的核心在于构建一个能够预测未来结果的模型,并通过优化过程来调整模型参数以提高预测准确性。虽然梯度下降法可能会遇到局部最小值的问题,但通常来说,这种方法仍然是有效的。此外,我还学到了模型在训练数据上的性能通常优于新数据上的性能,这是由于过拟合等因素造成的。今后也继续努力。

2024-08-26 15:09:06 1391

原创 Datawhale AI夏令营从零入门AI生图原理&实践 TASK3学习笔记

ComfyUI的应用场景非常广泛,无论是简单的图像生成任务还是复杂的多模态合成任务,它都能胜任。此外,ComfyUI还支持多种不同的AI模型,这意味着用户可以根据自己的需求选择最适合的模型来进行创作。在熟悉了ComfyUI的基本操作后,我开始尝试更进一步的操作——使用Lora(一种轻量级的微调方法)来改进模型。虽然我已经能够在ComfyUI的帮助下生成质量较高的图像,但我对AI文生图的兴趣并未止步于此。我相信,在魔塔社区这样的学习平台上,会有更多的资源和经验分享可以帮助我不断进步。

2024-08-16 19:26:20 250

原创 Datawhale AI夏令营从零入门AI生图原理&实践 TASK2学习笔记

在今天的课程中,我深入了解了AI生图技术及其应用。通过一系列实践操作,我不仅掌握了基本的操作流程,还学会了如何使用AI助手来解决遇到的技术难题。以下是我在本次学习过程中的收获和思考。

2024-08-14 21:07:06 550

原创 Datawhale AI夏令营从零入门AI生图原理&实践 TASK1学习笔记

艺术家和设计师现在可以借助AI技术,突破传统创作边界,实现前所未有的视觉效果和图像风格。在Datawhale AI夏令营的TASK1中,我首次深入接触到了AI作图的历史和基础原理,并跟随经验丰富的大佬,实践了AI作图的训练过程。虽然目前我对这一领域知之甚少,但我在研究代码和理解算法的过程中,深刻感受到了自身知识的巨大提升空间。在本次学习中,我尝试了关键词检索和图像生成,虽然成果令人鼓舞,但我也意识到还有许多地方可以改进,比如提高检索的准确性和作图的质量。

2024-08-08 23:21:28 161

原创 Datawhale AI夏令营(逻辑推理)TASK2学习笔记

在TASK1中我跟随大佬的步伐拿下第一次作业后,对Baseline与大语言模型原理有了进一步理解,而接下来在参与AI夏令营逻辑推理TASK2的过程中,我获得了对大型语言模型(LLM)在解决复杂逻辑问题中应用的深刻洞察。以下是我对这一过程的反思和总结。

2024-07-30 19:31:47 188

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除