洛谷 P1983题解 拓扑排序的应用

1. 理解拓扑排序

首先,我们知道拓扑排序可以处理一些现实生活中有次序的事件,所以本质上还是一种排序,但是在实际应用场景中,我们需要建模一种“大小”顺序。

比如说, 洛谷P1983这道题,其实理解其本质就是等级小的点才可以通向等级高的点,等级高低就是这道题排序的标准

代码:

#include <bits/stdc++.h>
using namespace std;

int n, m;
int edge[1001][1001];  // 存储依赖关系的邻接矩阵
vector<int> mp[1001];  // 邻接表
int in[1001];  // 入度数组
bool vis[1001];  // 访问标记
int s[1001];  // 存储每一趟车次的停靠站

struct node {
    int level;  // 当前车站的级别
    int id;     // 当前车站的编号
};

queue<node> q;

int main() {
    cin >> n >> m;

    // 处理每一趟车次
    for (int i = 1; i <= m; i++) {
        int x;
        cin >> x;
        fill(vis + 1, vis + n + 1, 0);  // 初始化vis数组

        // 读取停靠站信息
        for (int i = 1; i <= x; i++) {
            cin >> s[i];
            vis[s[i]] = 1;  // 标记该站点已被访问
        }

        // 建立依赖关系
        for (int i = s[1]; i <= s[x]; i++) {
            if (!vis[i]) {
                for (int j = 1; j <= x; j++) {
                    if (!edge[i][s[j]]) {
                        mp[i].push_back(s[j]);
                        edge[i][s[j]] = 1;  // 表示 i 到 s[j] 有依赖关系
                        in[s[j]]++;  // s[j] 的入度增加
                    }
                }
            }
        }
    }

    // 初始化队列,将所有入度为 0 的节点加入队列
    for (int i = 1; i <= n; i++) {
        if (!in[i]) q.push({1, i});
    }

    int maxLevel = 0;  // 记录最大级别

    // 执行 BFS
    while (!q.empty()) {
        node now = q.front();
        q.pop();

        // 更新与当前车站相关的所有站点的级别
        for (int i = 0; i < mp[now.id].size(); i++) {
            in[mp[now.id][i]]--;
            if (!in[mp[now.id][i]]) {
                q.push({now.level + 1, mp[now.id][i]});
                maxLevel = max(maxLevel, now.level + 1);
            }
        }
    }

    // 输出最少级别数
    cout << maxLevel << endl;
    return 0;
}
P2516 题目涉及的是一个与字符串处理和动态规划相关的挑战。题目要求对一个由数字组成的字符串进行分割,使得每个分割出的数字子串能构成一个递增序列,并且每部分对应的数值都比前一部分大。以下是解题思路及实现方法。 ### 问题解析 - 输入是一个长度不超过 **40** 的纯数字字符串。 - 目标是将该字符串分割成若干个非空数字子串,这些子串所表示的数值形成一个严格递增序列。 - 每个分割出来的子串必须满足其数值大于前一个子串的数值。 - 最终输出所有可能的合法分割方案的数量。 ### 解法概述 此问题可以通过 **深度优先搜索 (DFS)** 或 **回溯法** 来解决: - 使用递归的方式尝试在每一个位置进行分割。 - 对于每一次分割,提取当前子串并转换为整数,然后判断它是否大于上一次分割得到的值。 - 如果符合递增条件,则继续递归处理剩余的字符串部分。 - 当遍历完整个字符串并且满足所有分割条件时,计数器加一。 ### 实现细节 - 因为输入字符串长度最大为 **40**,所以需要考虑大数问题(超过 `int` 范围),建议使用 `long long` 类型或 Python 中的 `int` 类型自动处理大整数。 - 在分割过程中,确保没有前导零(除非子串长度为 1)。 - 递归终止条件是字符串已经被完全分割。 ### 示例代码 (C++) ```cpp #include <iostream> #include <string> using namespace std; int count = 0; // 将字符串 s 的 [start, end) 子串转换为整数 long long to_number(const string &s, int start, int end) { long long num = 0; for (int i = start; i < end; ++i) { num = num * 10 + (s[i] - '0'); } return num; } // DFS 函数:从 pos 位置开始分割,last_num 表示上一次分割出的数 void dfs(const string &s, int pos, long long last_num) { if (pos == s.size()) { count++; return; } for (int i = pos + 1; i <= s.size(); ++i) { // 剪枝:如果子串长度大于1且以0开头,则跳过 if (i - pos > 1 && s[pos] == '0') break; long long current = to_number(s, pos, i); if (current > last_num) { dfs(s, i, current); } } } int main() { string s; cin >> s; dfs(s, 0, -1); // 初始时 last_num 设置为 -1,保证第一个数可以任意选择 cout << count << endl; return 0; } ``` ### 算法复杂度分析 - 时间复杂度:最坏情况下为指数级 $O(2^n)$,因为每次递归都有多个分支。 - 空间复杂度:主要取决于递归栈深度,最多为 $O(n)$。 这种方法适用于题目给定的数据规模(字符串长度 ≤ 40),通过适当的剪枝优化,可以在合理时间内完成计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值