一、案例背景与需求分析
数据来源:
某电商平台2019年1月至9月的美妆商品订单数据,包含两个CSV文件:
-
beauty_prod_info.csv
:商品信息(商品编号、名称、类别、价格等)。 -
beauty_prod_sales.csv
:订单信息(订单编号、日期、客户信息、商品编号、订购数量、金额等)。
分析目标:
-
找出每个商品小类中价格最高的前5种商品。
-
统计每月的商品订购数量和消费金额。
-
按地区统计订购数量排名前20的城市。
-
分析各美妆商品的畅销程度。
-
统计各省份的美妆商品需求量。
-
基于RFM模型挖掘高价值客户。
二、数据清洗与预处理
工具:Pandas + Spark SQL
关键步骤:
-
缺失值处理:删除重复行、填充空值(如向后填充
bfill
和向前填充ffill
)。 -
字段格式化:
-
订单日期:转换为
datetime64
类型,过滤异常日期(如未来日期)。 -
订购数量:去除单位“个”,转换为整数。
-
订购单价:去除单位“元”,转换为浮点数。
-
-
数据简化:清洗省份名称(如“浙江省”简化为“浙江”)。
-
数据保存:将清洗后的数据保存为新的CSV文件,供后续分析使用。
代码片段:
python
# 示例:处理订购数量字段 prod_sales['订购数量'] = prod_sales['订购数量'].apply(lambda x: x.strip('个') if isinstance(x, str) else x) prod_sales['订购数量'] = prod_sales['订购数量'].astype('int64')
三、Spark SQL数据分析
核心操作:窗口函数、分组聚合、表连接。
-
TopN商品分析
使用窗口函数dense_rank()
按商品小类分组,筛选价格最高的前5种商品:sql
SELECT *, dense_rank() OVER (PARTITION BY cataB ORDER BY price DESC) AS rank FROM prod WHERE rank <= 5
-
月度统计
按月份分组,计算总订购数量和总金额:sql
SELECT od_month, SUM(od_quantity) AS total_quantity, SUM(od_amount) AS total_amount FROM sales GROUP BY od_month
-
RFM客户价值分析
通过percent_rank()
归一化最近购买时间(R)、消费频率(F)、总金额(M),加权计算客户得分:python
df.withColumn('score', col('R')*0.2 + col('F')*0.3 + col('M')*0.5)
结果保存:将分析结果写入HDFS,便于后续可视化。
四、数据可视化
工具:Pyecharts
可视化案例:
-
月度订购趋势图
-
横轴:月份;纵轴:订购数量(万件)和金额(亿元)。
-
效果:双Y轴柱状图,直观展示销售趋势。
-
-
城市订购排名
-
横向柱状图显示订购量TOP20城市,数据标签显示具体数值。
-
代码片段:
python
# 月度订购柱状图 bar = Bar() bar.add_xaxis(months) bar.add_yaxis("订购数量(万件)", quantities) bar.add_yaxis("金额(亿元)", amounts) bar.render("month_sale.html")
五、实时流数据处理实例
场景:模拟手机通话记录实时处理
技术栈:Kafka + Spark Streaming
流程:
-
生产者:生成随机通话记录(主叫号码、通话时间等),发送至Kafka的Topic(按号码前缀分区)。
-
消费者:Spark Streaming从Kafka读取消息,计算通话时长,按接通时间的年月分类保存至HDFS。
关键代码:
python
# 处理通话记录 def process(x): _, record = x fields = record.split(',') call_time = datetime.strptime(fields[3], '%Y-%m-%d %H:%M:%S') ym = f"{call_time.year}{call_time.month:02d}" return (fields[0], fields[2], fields[3], fields[4], ym)
六、案例部署与集群运行
环境:Spark on YARN集群
步骤:
-
修改代码路径为HDFS地址,动态接收参数。
-
提交任务至YARN集群:
bash
spark-submit --master yarn --deploy-mode cluster main.py hdfs://vm01:9000/datas
-
通过YARN Web UI监控任务状态,验证结果文件是否生成。
结语
通过本案例,我们完整实践了Spark在离线数据处理和实时流计算中的应用,涵盖了数据清洗、SQL分析、可视化及集群部署等关键环节。读者可结合自身业务需求,灵活调整分析维度(如增加用户画像分析),进一步挖掘数据价值。
扩展思考:
-
如何优化窗口函数性能以应对更大规模数据?
-
实时流处理中如何保证Exactly-Once语义?