Spark大数据分析综合案例实战

一、案例背景与需求分析

数据来源
某电商平台2019年1月至9月的美妆商品订单数据,包含两个CSV文件:

  • beauty_prod_info.csv:商品信息(商品编号、名称、类别、价格等)。

  • beauty_prod_sales.csv:订单信息(订单编号、日期、客户信息、商品编号、订购数量、金额等)。

分析目标

  1. 找出每个商品小类中价格最高的前5种商品。

  2. 统计每月的商品订购数量和消费金额。

  3. 按地区统计订购数量排名前20的城市。

  4. 分析各美妆商品的畅销程度。

  5. 统计各省份的美妆商品需求量。

  6. 基于RFM模型挖掘高价值客户。


二、数据清洗与预处理

工具:Pandas + Spark SQL
关键步骤

  1. 缺失值处理:删除重复行、填充空值(如向后填充bfill和向前填充ffill)。

  2. 字段格式化

    • 订单日期:转换为datetime64类型,过滤异常日期(如未来日期)。

    • 订购数量:去除单位“个”,转换为整数。

    • 订购单价:去除单位“元”,转换为浮点数。

  3. 数据简化:清洗省份名称(如“浙江省”简化为“浙江”)。

  4. 数据保存:将清洗后的数据保存为新的CSV文件,供后续分析使用。

代码片段

python

# 示例:处理订购数量字段
prod_sales['订购数量'] = prod_sales['订购数量'].apply(lambda x: x.strip('个') if isinstance(x, str) else x)
prod_sales['订购数量'] = prod_sales['订购数量'].astype('int64')

三、Spark SQL数据分析

核心操作:窗口函数、分组聚合、表连接。

  1. TopN商品分析
    使用窗口函数dense_rank()按商品小类分组,筛选价格最高的前5种商品:

    sql

    SELECT *, dense_rank() OVER (PARTITION BY cataB ORDER BY price DESC) AS rank 
    FROM prod WHERE rank <= 5
  2. 月度统计
    按月份分组,计算总订购数量和总金额:

    sql

    SELECT od_month, SUM(od_quantity) AS total_quantity, SUM(od_amount) AS total_amount 
    FROM sales GROUP BY od_month
  3. RFM客户价值分析
    通过percent_rank()归一化最近购买时间(R)、消费频率(F)、总金额(M),加权计算客户得分:

    python

    df.withColumn('score', col('R')*0.2 + col('F')*0.3 + col('M')*0.5)

结果保存:将分析结果写入HDFS,便于后续可视化。


四、数据可视化

工具:Pyecharts
可视化案例

  1. 月度订购趋势图

    • 横轴:月份;纵轴:订购数量(万件)和金额(亿元)。

    • 效果:双Y轴柱状图,直观展示销售趋势。

  2. 城市订购排名

    • 横向柱状图显示订购量TOP20城市,数据标签显示具体数值。

代码片段

python

# 月度订购柱状图
bar = Bar()
bar.add_xaxis(months)
bar.add_yaxis("订购数量(万件)", quantities)
bar.add_yaxis("金额(亿元)", amounts)
bar.render("month_sale.html")

五、实时流数据处理实例

场景:模拟手机通话记录实时处理
技术栈:Kafka + Spark Streaming
流程

  1. 生产者:生成随机通话记录(主叫号码、通话时间等),发送至Kafka的Topic(按号码前缀分区)。

  2. 消费者:Spark Streaming从Kafka读取消息,计算通话时长,按接通时间的年月分类保存至HDFS。

关键代码

python

# 处理通话记录
def process(x):
    _, record = x
    fields = record.split(',')
    call_time = datetime.strptime(fields[3], '%Y-%m-%d %H:%M:%S')
    ym = f"{call_time.year}{call_time.month:02d}"
    return (fields[0], fields[2], fields[3], fields[4], ym)

六、案例部署与集群运行

环境:Spark on YARN集群
步骤

  1. 修改代码路径为HDFS地址,动态接收参数。

  2. 提交任务至YARN集群:

    bash

    spark-submit --master yarn --deploy-mode cluster main.py hdfs://vm01:9000/datas
  3. 通过YARN Web UI监控任务状态,验证结果文件是否生成。


结语

通过本案例,我们完整实践了Spark在离线数据处理和实时流计算中的应用,涵盖了数据清洗、SQL分析、可视化及集群部署等关键环节。读者可结合自身业务需求,灵活调整分析维度(如增加用户画像分析),进一步挖掘数据价值。

扩展思考

  • 如何优化窗口函数性能以应对更大规模数据?

  • 实时流处理中如何保证Exactly-Once语义?

上百节课详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程介绍: 讲解一个真实的、复杂的大型企业级大数据项目,是Spark的大型项目实战课程。 通过本套课程的学习,可以积累大量Spark项目经验,迈入Spark高级开发行列。 课程特色: 1、项目中全面覆盖了Spark Core、Spark SQL和Spark Streaming这三个技术框架几乎全部的初级和高级的技术点和知识点, 让学员学以致用,通过一套课程,即掌握如何将Spark所有的技术点和知识点应用在真实的项目中,来实现业务需求! 2、项目中的4个功能横块,全郃是实际企业项目中提取出来的,并进行技术整合和改良过的功能模块.全都是企业级的复杂和真实的需求,业务模块非常之复杂,绝对不是市面上的Dem级别的大数据项目能够想比拟的,学习过后,真正帮助学员增加实际 企业级项目实战经验。 3、项目中通过实际的功能模块和业务场景,以及讲师曾经开发过的处理十亿、甚至百亿以上数据级别的SparK作业的经验积累,贯穿讲解了大量的高级复杂的性能调优技术和知识、troubleshooting解决线上报错和故障的经验、高端的全方位数据倾斜处理和解决方案.真正帮助学员掌握高精尖的Spark技术! 4、项目中采用完全还原企业大数据项目开发场景的方式来讲解,每一个业务模块的讲解都包括了需求分析、方案设计、数据设计、编码实现、功能测试、性能调优等环节,真实还原企业级大数据项目开发场景。 模块简介: 1、用户访问session分析,该模块主要是对用户访问session进行统计分析.包括session的聚合指标计算、 按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session.该模块可以让产品经理、数据分析师以及企业管理层形象地看到各种条件下的具体用户行为以及统计指标.从而对公司的产品设计以及业务发展战略做出调整.主要使用Spark Core实现. 2、页面单跳转化率统计,该模块主要是计算关键页面之间的单步跳转转化率,涉及到页面切片算法以及页面流匹配算法.该模块可以让产品经理、数据分析师以及企业管理层看到各个关键页面之间的转化率.从而对网页布局,进行更好的优化设计。主要使用Spark Core实现. 3、热门商品离线统计,该模块主要实现每天统计出各个区域的top3热门商品.然后使用Oozie进行离线统计任务的定时调度,使用Zeppeline进行数据可视化的报表展示.该模块可以让企业管理层看到公司售卖的 商品的整体情况,从而对公司的商品相关的战略进行调螫.主要使用Spark SQL实现。 4、广告流量实时统计.该模块负责实时统计公司的广告流量.包括广告展现流量和广告点击流量,实现动态黑名单机制以及黑名单过滤,实现滑动窗口内的各城市的广告展现流立和广告点击流直的统计,实现 每个区域诲个广告的点击流置实时统计,实现每个区域top3点击量的广告的统计,主要使用Spark Streaming实现.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值