双目标定参数中的本质矩阵E和基础矩阵F【含义及作用】

本质矩阵 E 和基础矩阵 F 是立体视觉和多视图几何中最核心的两个矩阵,它们建立了两个相机图像之间对应点的几何约束关系。下面我将用图示思维 + 数学推导 + 应用场景的方式,一步一步为你讲清楚它们的本质、作用、生成方法和差异


一、本质矩阵 E 和基础矩阵 F 的作用:一言以蔽之

E 和 F 矩阵都用来表达:左图中的某个像素点在右图中应该落在一条极线上。

即:

x₂ᵀ · E · x₁ = 0 (归一化相机坐标) x₂ᵀ · F · x₁ = 0 (图像像素坐标)

其中:

  • x1是左图中的点(列向量)

  • x2是右图中的点

  • E 用于归一化相机坐标,F 用于图像像素坐标


二、图示理解:极几何关系

在双目相机系统中:

左相机          右相机

  o------------------o

    ↘       ↙

      \     /

       3D 点 P

  • P 是世界空间中的一个点

  • 在左右相机图像上分别投影为点 x1和 x2

  • 那么:给定 x₁,可以在右图中确定一条极线 e₂,x₂ 必定在这条极线上

这个极线的数学形式就是:

x₂ᵀ · F · x₁ = 0

这就是 F 的作用 —— 像素坐标空间中的几何约束


三、E 和 F 的区别与联系

比较本质矩阵 E基础矩阵 F
坐标空间归一化相机坐标系图像像素坐标系
依赖内参❌ 不包含相机内参✅ 包含相机内参
是否用于真实图像❌ 通常只用于内部估计✅ 真正用于图像极线绘制与约束
用途三维重建 / 相机姿态估计图像对匹配 / 极线校正
计算来源E = [T]_× RF = K⁻ᵀ · E · K⁻¹

 四、矩阵生成方式

1️⃣ 本质矩阵 E 的计算方式:

假设右相机相对于左相机的姿态为:

  • R:旋转矩阵

  • T:平移向量

那么,公式:

E=[T]×​R

其中 [T]×​ 是平移向量 T 的反对称矩阵,表示叉乘操作:

然后与旋转矩阵相乘得 E。


2️⃣ 基础矩阵 F 的计算方式:

基础矩阵将本质矩阵“转移”到图像像素坐标空间:

其中:

  • KL​:左相机内参矩阵

  • KR​:右相机内参矩阵

因此,F 是通过 E 和左右相机的内参推导出来的。


 五、常见用途对比

场景用到的矩阵作用
极线校正F给定左图点,计算右图极线
三维重建E恢复相机姿态 R/T
自动特征匹配(RANSAC)F匹配点对剔除错误匹配
三角测量(triangulation)E从点对反推3D坐标
cv::findFundamentalMat()估计 F从点对估计极线约束
cv::findEssentialMat()估计 E从点对估计 R、T
cv::recoverPose()分解 E → R, T得到相对位姿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值