自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 主成分分析 (PCA)

主成分分析(Principal Component Analysis,PCA) 是一种常用的降维技术,属于无监督方法,用于将高维数据转换为低维表示,同时尽可能保留原始数据的关键信息。通过线性变换,将原始高维向量通过投影矩阵,投射到低维空间,重新组合成一组新向量,这些向量称为主成分,它们具有无关性正交的特点;其中前几个主成分能够捕获原始数据的大部分方差(即信息例如,在二维平面上有一组散点数据,PCA 会找到一条 “最佳” 直线 (第一主成分),使数据在该直线上的投影方差最大;

2025-06-04 19:20:34 946

原创 支持向量机SVM

在软间隔中,支持向量包括三类样本:1. 边界上的样本:满足且(对应2. 间隔内的正确分类样本:满足且(对应3. 错分样本:满足且(对应关键性质:软间隔超平面的位置由所有支持向量共同决定,而非仅由边界上的样本决定。错分样本和间隔内样本通过调整的值影响超平面,使模型在复杂数据中仍保持鲁棒性。核函数是一个函数 K(x , z) ,它接受两个低维空间中的输入向量 x 和 z ,输出它们在高维特征空间中的内积,即 K(x , z) = 〈 ϕ(x) , ϕ(z) 〉;其中 ϕ(

2025-06-02 18:39:57 1039

原创 机器学习之逻辑回归(Logistic Regression)

1. 初始化参数学习率:控制梯度下降时参数更新的步长,自定义设置(我将其设置为0.1);最大迭代次数:自定义设置(我设置为10000),防止算法无限循环。收敛阈值:自定义设置(我设置为1e-4),当梯度的范数小于设置值时,认为算法已收敛。参数向量:存储模型的权重和偏置,初始化为 None。2. 调用sigmoid函数,将线性输出转换为概率值(0-1之间)3.模型训练添加偏置项:将输入特征矩阵X扩展为X_b,在第一列插入全 1 向量,对应偏置参数;

2025-05-19 17:30:46 966

原创 基于概率论的分类算法:朴素贝叶斯

朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的分类方法,之所以称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。原理:朴素贝叶斯方法基于贝叶斯定理,在分类问题中,要根据给定的特征向量来预测类别。通过贝叶斯定理,将后验概率转化为P(X|Y)P(Y)/P(X)。其中P(Y)是类别Y的先验概率,P(X|Y)是在类别Y下特征向量X出现的概率,P(X)是特征向量X的先验概率。由于P(X)对于所有类别是相同的,所以在比较不同类别时可以忽略。假设。

2025-05-05 16:22:51 1159

原创 机器学习之决策树

分类决策树模型是一种描述对实例进行分类的树形结构,由结点和有向边组成。结点包括两种类型:内部结点和叶结点,其中内部结点表示一个特征和属性叶结点表示一个类。□ 决策过程中提出的每个判定问题都是对某个属性的“测试”;□ 决策过程的最终结论对应了我们所希望的判定结果;□ 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围内;□ 从根结点到每个叶结点的路径对应了一个判定测试序列;□ 决策树学习的目的是为了产生一棵泛化能力强。

2025-04-21 15:44:57 1221

原创 基于KNN分类器的PR曲线与ROC曲线评估

分类模型的是用于分类算法的一系列,它们帮助量化模型在不同方面的表现(如等)。基础的分类指标:错误率和精度、精确率(Precision,查准率)和召回率(Recall,查全率)。概率与阈值相关指标:PR曲线、ROC曲线与AUC。

2025-04-07 15:53:17 908

原创 基于K近邻算法的分类器实现

工作原理:存在一个样本数据集合(即训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中前k个特征最相似的数据(k的出处,通常k是不大于20的整数),将这k个数据进行分析后,选择其中出现次数最多(频率最高)的数据的分类标签,作为新数据的分类标签。ps:在输入命令之前,需要重新加载kNN.py模块,以确保更新的内容可以生效,每次代码更新后皆需如此,不再赘述。

2025-03-24 18:49:32 898

原创 VSCode的下载与安装及编译环境配置

官网链接:https://code.visualstudio.com/1.点开官网链接,点击右上角的Download,打开之后,点击Windows开始下载2.打开下载好的文件,点击同意协议然后点击下一步3.点击选择安装路径(默认在C盘),然后选择开始菜单文件夹,需要修改就点击浏览更换,不修改就点击下一步4.选择附加任务项,选择红色方框圈出来的选项,然后点击下一步5.确认选择无误,然后点击安装,等待一会,然后点击完成即安装成功1.点击四方形图标,出现扩展:商店,在搜索框输入语言(如Chinese),点击安装,

2025-03-09 21:59:33 957

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除