【作业】miniconda3下载、虚拟环境在pycharm的应用

部署运行你感兴趣的模型镜像

一、miniconda3下载   安装包链接:https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

(下载界面如上,地址可默认)

二、实现miniconda的环境变量设置

1.打开所在文件夹分别复制miniconda文件和scripts文件路径放到环境变量的系统变量里

以miniconda文件为例:

1)复制miniconda3所在的系统路径,打开电脑四方格搜索“高级系统”,点击“查看高级系统设置”

2)点击环境变量→点击系统变量中的“path”,编辑→新建→粘贴路径(miniconda中的scripts的文件路径也是一样操作)

二、创建虚拟环境---找到Anaconda Prompt (Miniconda3)【系统搜索这个软件,打开文件所在位置,可以放在miniconda文件里】---打开此软件

步骤1. 打开后命令行前会显示 `(base)`,表示当前处于Miniconda的基础环境。

步骤2:创建并激活Python虚拟环境(以3.9版本为例)
在命令行中依次输入以下命令,每输完一条按回车:
1. 创建环境:`conda create -n py39 python=3.9`(“py39”是环境名称,可自定义)
2. 确认安装:按提示输入 `y`,等待环境创建完成
3. 激活环境:`conda activate py39`

激活后,命令行前会显示 `(py39)`,说明已进入该虚拟环境。

 步骤3:验证环境可用性
在激活的 `(py39)` 环境中,输入以下命令验证:
`python --version`:会显示 `Python 3.9.x`,证明Python正常
`pip --version`:会显示对应pip版本,证明包管理工具可用。

确定完python的版本和pip的版本后可以在电脑编译器(快捷键window+R→cmd),虚拟环境下载需要的库。【建议在将虚拟环境配置之后下载】

三、配置miniconda的虚拟环境到pycharm中:

效果图(下载完库之后的图):

四、下载虚拟环境中的库

配置好虚拟环境之后,开始下载库-----打开电脑自带编译器(快捷键window+R→cmd)

1.执行初始化命令(miniconda初始化配置,激活环境)

命令行输入:

conda init

等待运行结果之后关闭当前CMD窗口,重新打开新的cmd窗口。

2.输入激活虚拟环境命令:

conda activate py39

可以根据Anaconda Prompt 中查询到的python版本来修改py后面的数字,py310\py313......)

运行之后系统命令行前面会出现py39

3.下载所需库,命令:

pip install +所需要的库(比如:pip install numpy)

4.在pycharm编译器里面可以看到下载后的库:

继续下载需要的库,下载完之后在编译器里面显示就没问题了。

【ps:做实验需要安装python的包,在尝试了python自带的解释器几次出错之后,决定用虚拟环境来安装需要的库;整个过程都是自行实践总结的,期间也遇到很多问题,后面成功解决了,锻炼了自我解决问题的能力】

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 配置和使用 Conda 虚拟环境 为了在 PyCharm 中配置并使用通过 Miniconda 创建的虚拟环境,需遵循特定的操作流程。 #### 1. 创建 Conda 虚拟环境 打开 Miniconda 控制台输入如下命令来创建名为 `lchatai` 的新环境,并指定 Python 版本为 3.11[^1]: ```bash conda create -n lchatai python=3.11 -y ``` 此操作会自动安装所选版本的 Python 及其依赖项到新的隔离环境中。无需手动确认安装过程因为 `-y` 参数已给出默认同意指令。 #### 2. 激活新建的 Conda 环境 完成上述步骤之后,在继续之前应当激活刚刚建立好的环境以便后续操作能够针对该环境生效。可以通过下面这条简单的命令实现: ```bash conda activate lchatai ``` 一旦成功切换至目标环境,则可以在终端里看到提示符前带有 `(lchatai)` 字样的标志,表明当前处于活跃状态下的正是所需的开发空间。 #### 3. 安装必要的包 进入正确的环境下后就可以按照项目的具体需求来进行各种库文件或者工具集的部署工作了。比如要安装 NumPy 库的话只需要运行这样的语句即可: ```bash pip install numpy ``` 当然也可以利用 conda 自带的方式去获取资源,取决于个人偏好以及可用性的考量因素。 #### 4. 在 PyCharm 中设置解释器路径 启动 PyCharm IDE 并加载项目;前往 **File -> Settings (Ctrl+Alt+S)** 或者对于 macOS 用户来说则是 **PyCharm -> Preferences** 。导航到 **Project: your_project_name -> Python Interpreter** ,点击右上角齿轮图标选择 **Add...** 此时会出现一个新的窗口允许挑选不同的方式添加外部解释器。应该选取左侧列表中的 “Conda Environment”,然后勾选“Existing environment”。浏览找到由前面几步构建出来的那个特殊位置——即 Miniconda 下属目录内的某个子文件夹下存放着对应于刚才命名的空间(例如 C:\Users\YourUsername\.conda\envs\lchatai)。最终选定它作为应用程序执行期间调用的基础平台[^2]。 #### 5. 测试配置是否正常运作 当一切准备就绪以后不妨编写一小段测试程序验证一下整个链条能否顺利衔接起来。尝试打印出 Python 当前所处的工作区信息以确保无误: ```python import sys print(sys.executable) ``` 如果输出结果显示的是预期之中位于 `.conda/envs/lchatai/` 文件夹内部的可执行文件全名,那么恭喜已经完成了全部设定!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值