- 博客(8)
- 收藏
- 关注
原创 基于PCA和SVM的ORL人脸识别
通过PCA降维和SVM分类,我们成功地对ORL人脸数据集进行了分类。我们可以看到,通过PCA降维后,模型的训练和预测性能都得到了显著提升。通过可视化结果,我们也可以更直观地理解降维后数据的分布情况。
2025-06-09 19:51:41
310
原创 基于SVM的垃圾邮件分类器
在本文中,我们使用中的SVM分类器来构建一个垃圾邮件分类器。数据集来源于经典的SpamAssassin数据集,包含标注好的垃圾邮件和非垃圾邮件。数据加载与预处理特征提取SVM模型训练模型评估与优化。
2025-06-02 22:59:25
720
原创 二元Logistic回归
二元Logistic回归是一种简单且强大的分类算法,广泛应用于许多领域,如医疗诊断、金融欺诈检测等。通过理解其背后的数学原理,并结合Python代码实现,我们可以快速上手并解决实际问题。希望本文能帮助你更好地理解Logistic回归,并能够在实际项目中应用。
2025-05-19 23:41:16
854
原创 朴素贝叶斯分类算法实现西瓜分类
朴素贝叶斯算法的核心基于贝叶斯定理。贝叶斯定理用于描述条件概率,即给定某些已知信息,求未知信息的概率。PC∣XPX∣C⋅PCPXPC∣XPXPX∣C⋅PCP(C|X):给定特征 (X) 时,类别 (C) 的后验概率。P(X|C):在类别 (C) 下,特征 (X) 的似然概率。PCP(C)PC:类别C(C)C的先验概率。P(X):特征 (X) 的边际概率。
2025-05-05 23:17:58
645
原创 决策树预测银行是否贷款
决策树是一种常用的机器学习算法,主要用于分类问题。它通过对数据进行递归划分,生成一个树形结构,从而做出决策。每个节点表示一个特征的判断条件,每个分支表示特征的取值,而每个叶节点则代表一个分类结果。通过决策树模型,我们能够根据客户的特征预测银行是否会发放贷款。决策树的构建过程中,信息增益作为特征选择的标准,帮助我们选择最具区分性的特征进行划分。通过递归划分和剪枝技术,决策树能够高效地进行分类决策。最终,我们通过可视化手段,使得模型的决策过程更加直观易懂。
2025-04-21 23:46:19
934
原创 使用ROC曲线与PR曲线评估K近邻分类器性能
模型评估是机器学习流程中的核心步骤。准确率:衡量模型预测正确的比例。精确率与召回率:精确率表示模型预测为正类的样本中有多少是正类,召回率表示所有真实正类中有多少被正确识别。F1分数:精确率和召回率的调和平均数,平衡了两者的影响。ROC曲线与AUC:评估模型在不同分类阈值下的表现。PR曲线:精确率与召回率之间的关系,尤其适用于类别不平衡问题。其中,ROC曲线和PR曲线是用于评估二分类模型性能的两种重要方法。通过这两条曲线,我们可以深入了解模型在不同的阈值设置下的表现,帮助我们选择最合适的模型或参数。
2025-04-07 22:25:01
774
原创 基于K近邻算法的分类器的实现
实现了一个基于KNN的简单分类器,通过标准化处理提高了模型的稳定性,并通过计算欧几里得距离进行分类预测,预测出海伦对约会对象喜好程度,便于平台准确推送。
2025-03-23 17:04:11
1024
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人