UNet 改进(32):与瓶颈注意力模块(BAM)实现

1.创新点分析

在计算机视觉领域,语义分割是一项重要任务,而UNet网络因其出色的性能成为该领域的经典架构。本文将详细介绍一个改进版的UNet实现,其中引入了瓶颈注意力模块(Bottleneck Attention Module, BAM),以提升模型性能。

1. UNet网络简介

UNet是一种对称的编码器-解码器结构,最初设计用于生物医学图像分割。其核心特点包括:

  • ​编码器路径(下采样路径)​​:通过卷积和池化操作逐步提取特征并降低空间分辨率
  • ​解码器路径(上采样路径)​​:通过上采样和卷积操作逐步恢复空间分辨率
  • ​跳跃连接​​:将编码器路径中的特征图与解码器路径中的对应特征图拼接,保留更多空间信息

2. 代码结构解析

2.1 基础构建块:DoubleConv

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值