1.创新点分析
在计算机视觉领域,语义分割是一项重要任务,而UNet网络因其出色的性能成为该领域的经典架构。本文将详细介绍一个改进版的UNet实现,其中引入了瓶颈注意力模块(Bottleneck Attention Module, BAM),以提升模型性能。
1. UNet网络简介
UNet是一种对称的编码器-解码器结构,最初设计用于生物医学图像分割。其核心特点包括:
- 编码器路径(下采样路径):通过卷积和池化操作逐步提取特征并降低空间分辨率
- 解码器路径(上采样路径):通过上采样和卷积操作逐步恢复空间分辨率
- 跳跃连接:将编码器路径中的特征图与解码器路径中的对应特征图拼接,保留更多空间信息
2. 代码结构解析
2.1 基础构建块:DoubleConv
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):