在当今的技术领域,LangChain 正逐渐崭露头角,成为开发语言模型应用的强大工具。如果你渴望深入了解并掌握这一技术,那么就跟随本文一起开启 LangChain 的入门之旅吧!
后续将持续输出关于LangChain的技术文章,有兴趣的同学可以关注我们 !
什么是 LangChain ?
LangChain 是一个开源的 Python 库,旨在帮助开发者构建基于语言模型(如 GPT)驱动的应用程序,特别是对于处理复杂的多步骤推理任务、信息检索、对话管理等场景。LangChain 提供了一些高级功能,帮助开发者更好地利用大型语言模型(LLM)来进行任务处理、文档分析、API 调用等操作。
官网:https://www.langchain.com/
如何学习LanChain
1、掌握基础知识
了解自然语言处理(NLP)和语言模型的基本概念,例如词向量、文本分类、命名实体识别等。
熟悉 Python 编程语言,因为 LangChain 主要是用 Python 实现的。
2、官方文档研读
访问 LangChain 的官方文档,仔细阅读其中的教程、示例和 API 参考。
按照文档中的步骤进行实践操作,加深对各个功能的理解。
准备工作
在开始之前,确保您已经安装了 Python 环境,并通过以下命令安装 LangChain 及其相关依赖:
pip install langchain
核心概念解析
模型(Models)
LangChain 支持多种语言模型,包括 OpenAI 的 GPT 系列等。您需要根据具体需求选择合适的模型,并了解如何与这些模型进行交互。
提示模板(Prompt Templates)
精心设计的提示模板能够引导模型生成更准确和有用的回答。通过定义模板中的变量和结构,您可以灵活控制输入给模型的信息。
链(Chains)
链是将多个组件组合在一起的关键。例如,将模型与提示模板、数据检索组件等连接起来,形成一个完整的处理流程。
实践操作入门
1、简单的问答应用
首先,创建一个提示模板,然后调用选定的语言模型,实现一个基本的问答功能。
from langchain import PromptTemplate
from langchain.llms import OpenAI
template = "Question: {question}\nAnswer:"
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
question = "What is LangChain?"
response = llm(prompt.format(question=question))
print(response)
2、结合数据检索
假设您有一个知识库,通过 LangChain 可以实现根据用户问题从知识库中检索相关信息,并结合语言模型生成回答。
数据处理与优化
在实际应用中,数据的质量和预处理至关重要。清理、转换和标记数据可以显著提高模型的性能和准确性。
总结
LangChain 为语言模型的应用开发提供了强大的技术支持。通过理解其核心概念,并进行实际的编码实践,您已经迈出了掌握这一技术的重要一步。不断探索和创新,您将能够开发出更加智能和实用的语言模型应用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓