LangChain 技术入门指南:探索语言模型的无限可能

在当今的技术领域,LangChain 正逐渐崭露头角,成为开发语言模型应用的强大工具。如果你渴望深入了解并掌握这一技术,那么就跟随本文一起开启 LangChain 的入门之旅吧!

图片

后续将持续输出关于LangChain的技术文章,有兴趣的同学可以关注我们 !

什么是 LangChain ?

LangChain 是一个开源的 Python 库,旨在帮助开发者构建基于语言模型(如 GPT)驱动的应用程序,特别是对于处理复杂的多步骤推理任务、信息检索、对话管理等场景。LangChain 提供了一些高级功能,帮助开发者更好地利用大型语言模型(LLM)来进行任务处理、文档分析、API 调用等操作。

官网:https://www.langchain.com/

如何学习LanChain

1、掌握基础知识

了解自然语言处理(NLP)和语言模型的基本概念,例如词向量、文本分类、命名实体识别等。

熟悉 Python 编程语言,因为 LangChain 主要是用 Python 实现的。

2、官方文档研读

访问 LangChain 的官方文档,仔细阅读其中的教程、示例和 API 参考。

按照文档中的步骤进行实践操作,加深对各个功能的理解。

准备工作

在开始之前,确保您已经安装了 Python 环境,并通过以下命令安装 LangChain 及其相关依赖:

pip install langchain

核心概念解析

模型(Models)

LangChain 支持多种语言模型,包括 OpenAI 的 GPT 系列等。您需要根据具体需求选择合适的模型,并了解如何与这些模型进行交互。

提示模板(Prompt Templates)

精心设计的提示模板能够引导模型生成更准确和有用的回答。通过定义模板中的变量和结构,您可以灵活控制输入给模型的信息。

链(Chains)

链是将多个组件组合在一起的关键。例如,将模型与提示模板、数据检索组件等连接起来,形成一个完整的处理流程。

实践操作入门

1、简单的问答应用

首先,创建一个提示模板,然后调用选定的语言模型,实现一个基本的问答功能。

from langchain import PromptTemplatefrom langchain.llms import OpenAI
template = "Question: {question}\nAnswer:"prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()question = "What is LangChain?"response = llm(prompt.format(question=question))print(response)

2、结合数据检索

假设您有一个知识库,通过 LangChain 可以实现根据用户问题从知识库中检索相关信息,并结合语言模型生成回答。

数据处理与优化

在实际应用中,数据的质量和预处理至关重要。清理、转换和标记数据可以显著提高模型的性能和准确性。

总结

LangChain 为语言模型的应用开发提供了强大的技术支持。通过理解其核心概念,并进行实际的编码实践,您已经迈出了掌握这一技术的重要一步。不断探索和创新,您将能够开发出更加智能和实用的语言模型应用。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值