🌟 为什么要本地化部署大模型?
-
数据安全:敏感数据不出企业内网,避免泄露风险。
-
成本可控:长期使用比云服务便宜 50% 以上(例如 DeepSeek-R1 70B 本地部署年成本约 10 万,云服务月租 20 万 +)。
-
自主可控:模型可随意定制,支持私有化 API 接口。
📊 主流大模型本地化部署对比表(价格 / 配置 / 速度 / 场景)
💡 选购建议:按预算和需求匹配
1. 个人开发者 / 学生党(预算 < 1 万)
-
推荐模型:DeepSeek-7B、RedPajama-7B
-
配置:RTX 3060 + 32GB 内存(总成本约 1 万)
-
用途:写代码、做实验、简单对话机器人
-
优势:成本低,支持单卡运行,适合快速验证想法。
2. 中小企业(预算 5 万 - 20 万)
-
推荐模型:DeepSeek-70B、LLaMA 2 70B、Baichuan4-air
-
配置:2×RTX 4090 + 128GB 内存(总成本约 6 万)
-
用途:客服机器人、智能写作、数据分析
-
优势:性价比高,支持中文优化,适合快速落地业务。
3. 大型企业 / 科研机构(预算 > 100 万)
-
推荐模型:DeepSeek-R1 671B、Groq LPU、GLM-4
-
配置:H100 集群或 GroqChip 集群(总成本 200 万 +)
-
用途:金融风控、医疗影像分析、实时交互系统
-
优势:性能天花板,支持超大规模数据处理。
🚦 避坑指南:这些坑千万别踩!
-
盲目追求大模型:70B 模型已能满足 90% 的场景需求,671B 模型性价比极低(成本 300 万 +,速度仅比 70B 快 20%)。
-
忽视显存需求:例如 DeepSeek-R1 671B 需要 480GB 显存,必须多卡并联,单卡 A100 无法运行。
-
低估运维成本:硬件电费每月约 1 万(以 10 张 H100 为例),还需专业工程师维护。
-
忽略国产化方案:百度昆仑芯 P800 单机 8 卡方案成本比英伟达低 65%,适合敏感行业。
🎁 免费资源推荐
-
DeepSeek-7B:完全免费,支持商用。
-
GLM-4-Flash:开源免费,速度比 DeepSeek-R1 快 8 倍。
-
RedPajama-7B:开源可商用,训练数据覆盖 1.2 万亿 token。
🔥 总结:选对模型,少走弯路!
需求 | 推荐模型 | 核心优势 |
---|---|---|
中文深度优化 | DeepSeek-70B | 国产自研,支持长上下文(32K) |
多语言支持 | LLaMA 2 70B | 开源免费,社区支持完善 |
超高速实时交互 | Groq LPU | 自研芯片,速度比 GPU 快 10 倍 |
高性价比 | Baichuan4-air | 推理成本比行业低 99% |
轻量级部署 | InternLM-20B | 单张 3090 显卡即可运行,性能对标 Llama2-70B |
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓