SenWeaver;一个集人工智能一站式数据集、模型、应用服务于一体的创意、新奇、有趣、实用平台!
MaxKB 开源知识库问答系统
MaxKB,全称 Max Knowledge Base,是一款基于大语言模型和 RAG(Retrieval-Augmented Generation)技术的开源知识库问答系统。它被设计用于智能客服、企业内部知识库、学术研究与教育等多种场景,以其强大的文本处理能力和智能问答交互体验而受到广泛应用。
MaxKB 的核心优势在于其开箱即用的特性,支持直接上传文档或自动爬取在线文档,实现文本的自动拆分、向量化和 RAG 处理,有效减少大模型幻觉,提供流畅的智能问答体验。
一、什么是 MaxKB
MaxKB,即Max Knowledge Base,是一个开源的问答系统,它依托于先进的大型语言模型和RAG技术,被广泛部署在企业的知识库管理、客户服务、学术研究以及教育等多个领域。
MaxKB 遵循 GNU General Public License version 3 (GPLv3) 许可证发布。这意味着用户可以在遵守 GPLv3 许可证的条件下自由使用、复制、修改和分发 MaxKB 软件。
MaxKB,作为一款专为知识库问答设计的应用,为企业的智能化升级提供了强大的推动力,并支持企业达成提升质量和效率的目标。在知识库管理领域,MaxKB 促进企业在知识收集、录入以及知识库的构建过程中实现全面的自动化。
在提供场景化的智能搜索解决方案方面,MaxKB 能够理解并分析用户提出的问题,进而在知识库中进行精准匹配和检索。就回答的精确度而言,MaxKB 整合了成熟的大型语言模型(LLM)与检索增强生成(RAG)技术,这使得系统能够显著减少由大模型产生的幻觉效应对搜索结果准确性的影响,进而增强企业对业务数据进行有效分类和检索的能力。
在保障数据安全方面,MaxKB 提供了本地部署和本地大模型调用的功能,这有助于企业有效控制在使用知识库过程中可能出现的未授权访问风险,以及避免使用公共模型时数据传输的安全问题。通过MaxKB,企业用户能够迅速部署业务AI助手,将创造性的AI技术应用于管理业务数据、查询内部资料和提供在线客户服务等场景,从而优化服务流程并显著提高用户满意度。
二、显著特点
这里分享几个 MaxKB 的优势, 大家可以参考一下:
1.即时可用性:MaxKB支持直接上传文件或自动抓取网络文档,并能够自动处理文本,包括分割、向量化以及应用RAG技术,这有助于减少大模型的幻觉效应,并提升智能问答的交互体验。
2.便捷集成:MaxKB能够无需编码即可快速集成到第三方业务系统中,并且可以迅速与企业微信、钉钉、飞书、公众号等平台对接,赋予现有系统智能问答的功能,从而提升用户的满意度。
3.高度可配置:MaxKB内建了强大的工作流引擎和函数库,使得AI工作流程可以根据需要进行编排,满足多样化的业务场景需求。
4.模型兼容性:MaxKB支持与多种大型语言模型的对接,包括但不限于本地私有模型(如Llama 3、Qwen 2)、国内公共模型(例如通义千问、腾讯混元、字节豆包、百度千帆、智谱AI、Kimi等)以及国际公共模型(如OpenAI、Claude、Gemini等)。
三、MaxKB的技术实现
让我们来探讨一下MaxKB所依托的技术架构:
-
前端技术:MaxKB在用户界面层面选择了Vue.js,这是一种流行的JavaScript框架,用于构建交互式的前端应用。
-
后端技术:在服务器端,MaxKB采用了Python编程语言,并基于Django框架,Django是一个高级的Web框架,能够鼓励快速开发和干净、实用的设计。
-
语言处理框架:MaxKB利用LangChain进行语言处理,LangChain是一个强大的工具,用于构建和部署语言模型的应用。
-
数据库技术:在数据存储方面,MaxKB使用了PostgreSQL数据库及其向量扩展pgvector,这些工具为处理和存储大量数据提供了强大的支持。
-
大型语言模型:MaxKB支持整合多种大型语言模型,无论是本地私有的还是公开可用的模型,都能够被有效地利用以增强其问答能力。
它的系统架构设计的也非常值得我们学习参考, 这里我也分享一下:
组件库 | 功能描述 |
---|---|
@codemirror/theme-one-dark | CodeMirror 的一个深色主题 |
@ctrl/tinycolor | 颜色处理工具 |
@logicflow/core | 逻辑流核心组件 |
@logicflow/extension | 逻辑流扩展组件 |
@vueuse/core | Vue 的实用工具库 |
@wecom/jssdk | 企业微信的 JavaScript SDK |
axios | 用于发送 HTTP 请求的库 |
codemirror | 代码编辑器组件 |
cropperjs | 图片裁剪工具 |
echarts | 数据可视化图表库 |
element-plus | Vue 的组件库 |
file-saver | 文件保存工具 |
highlight.js | 代码高亮库 |
install | 安装工具 |
katex | 数学公式渲染库 |
lodash | 实用工具函数库 |
marked | Markdown 解析库 |
md-editor-v3 | Markdown 编辑器 |
medium-zoom | 图片缩放插件 |
mermaid | 流程图表库 |
mitt | 事件处理库 |
moment | 时间处理库 |
nprogress | 进度条显示库 |
pinia | Vue 的状态管理库 |
pinyin-pro | 拼音处理工具 |
recorder-core | 录音核心组件 |
screenfull | 全屏操作库 |
use-element-plus-theme | 元素加主题使用工具 |
vue-clipboard3 | Vue 复制粘贴插件 |
vue-codemirror | Vue 与 CodeMirror 结合的组件 |
vue-i18n | Vue 的国际化库 |
vue-router | Vue 的路由库 |
四、源码地址
MaxKB 的源代码托管在 GitHub 上,您可以通过以下链接访问:
https://github.com/1Panel-dev/MaxKB
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓