超实用!Dify快速接入本地MCP服务

Dify 可以通过插件实现 MCP 服务调用,而被调用的 MCP 服务基本可以分为以下两类:

  1. 通用 MCP 服务(非本地 MCP 服务)。
  2. 本地 MCP 服务。

本地 MCP 服务指的是本地通过 Java 或其他语言实现的 MCP 服务器端。

当你会用 Dify 调用本地 MCP 服务,也就意味着你会使用 Dify 调用通用 MCP 服务了,因为实现步骤和原理基本都是一样。

1.什么是MCP?

MCP 是 Model Context Protocol,模型上下文协议,它是由 Anthropic(Claude 大模型母公司)提出的开放协议,用于大模型连接外部“数据源”的一种协议。

它可以通俗的理解为 Java 界的 Spring Cloud Openfeign,只不过 Openfeign 是用于微服务通讯的,而 MCP 用于大模型通讯的,但它们都是为了通讯获取某项数据的一种机制,如下图所示:

2.为什么需要MCP?

MCP 存在的意义是它解决了大模型时代最关键的三个问题:数据孤岛、开发低效和生态碎片化等问题。

1.打破数据孤岛,让AI“连接万物”

大模型本身无法直接访问实时数据或本地资源(如数据库、文件系统),传统方式需要手动复制粘贴或定制接口。MCP 通过标准化协议,让大模型像“插USB”一样直接调用外部工具和数据源,例如:

  • 查天气时自动调用气象 API,无需手动输入数据。
  • 分析企业数据时直接连接内部数据库,避免信息割裂。

2.降低开发成本,一次适配所有场景

在之前每个大模型(如 DeepSeek、ChatGPT)需要为每个工具单独开发接口(Function Calling),导致重复劳动,MCP 通过统一协议:

  • 开发者只需写一次 MCP 服务端,所有兼容 MCP 的模型都能调用。
  • 用户无需关心技术细节,大模型可直接操作本地文件、设计软件等。

3.提升安全性与互操作性

  • 安全性:MCP 内置权限控制和加密机制,比直接开放数据库更安全。
  • 生态统一:类似 USB 接口,MCP 让不同厂商的工具能“即插即用”,避免生态分裂。

4.推动AIAgent的进化

MCP 让大模型从“被动应答”变为“主动调用工具”,例如:

  • 自动抓取网页新闻补充实时知识。
  • 打开 Idea 编写一个“Hello World”的代码。

MCP 的诞生,相当于为AI世界建立了“通用语言”,让模型、数据和工具能高效协作,最终释放大模型的全部潜力。

3.MCP组成和执行流程

MCP 架构分为以下 3 部分:

  • 客户端:大模型应用(如 DeepSeek、ChatGPT)发起 MCP 协议请求。
  • 服务器端:服务器端响应客户端的请求,并查询自己的业务实现请求处理和结果返回。

运行流程

  1. 用户提问 LLM。
  2. LLM 查询 MCP 服务列表。
  3. 找到需要调用 MCP 服务,调用 MCP 服务器端。
  4. MCP 服务器接收到指令。
  5. 调用对应工具(如数据库)执行。
  6. 返回结果给 LLM。

4.编写本地MCP服务

接下来,我们使用 Spring AI 来实现本地 MCP 服务器端,它的主要实现步骤如下:

  1. 添加 MCP Server 依赖。
  2. 设置 MCP 配置信息。
  3. 编写 MCP Server 服务代码。
  4. 将 MCP Server 进行暴露设置。

关键实现代码如下。

4.1 添加 MCP Server 依赖

<dependencies>
  <dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-starter-mcp-server-webflux</artifactId>
  </dependency>
</dependencies>

<repositories>
  <repository>
    <name>Central Portal Snapshots</name>
    <id>central-portal-snapshots</id>
    <url>https://central.sonatype.com/repository/maven-snapshots/</url>
    <releases>
      <enabled>false</enabled>
    </releases>
    <snapshots>
      <enabled>true</enabled>
    </snapshots>
  </repository>
  <repository>
    <id>spring-milestones</id>
    <name>Spring Milestones</name>
    <url>https://repo.spring.io/milestone</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
  </repository>
  <repository>
    <id>spring-snapshots</id>
    <name>Spring Snapshots</name>
    <url>https://repo.spring.io/snapshot</url>
    <releases>
      <enabled>false</enabled>
    </releases>
  </repository>
</repositories>

MCP Server 依赖有三种类型:

  • 标准输入/输出 (STDIO):spring-ai-starter-mcp-server
  • Spring MVC****(服务器发送的事件):spring-ai-starter-mcp-server-webmvc
  • Spring WebFlux(响应式 SSE):spring-ai-starter-mcp-server-webflux

4.2 设置 MCP 配置信息

MCP Server 包含以下配置信息:

配置项描述默认值
enabled启用/禁用 MCP 服务器TRUE
stdio启用/禁用 stdio 传输FALSE
name用于标识的服务器名称mcp-server
version服务器版本1.0.0
type服务器类型 (SYNC/ASYNC)SYNC
resource-change-notification启用资源更改通知TRUE
prompt-change-notification启用提示更改通知TRUE
tool-change-notification启用工具更改通知TRUE
tool-response-mime-type(可选)每个工具名称的响应 MIME 类型。例如,将 mime 类型与工具名称相关联spring.ai.mcp.server.tool-response-mime-type.generateImage=image/pngimage/pnggenerateImage()-
sse-message-endpointWeb 传输的 SSE 终端节点路径/mcp/message

其中 MCP Server 又分为以下两种类型。

服务器类型
  • 同步服务器:默认服务器类型,它专为应用程序中的简单请求-响应模式而设计。要启用此服务器类型,请在您的配置中设置。 激活后,它会自动处理同步工具规格的配置,spring.ai.mcp.server.type=SYNC。
  • 异步服务器:异步服务器实现使用非阻塞作并针对非阻塞作进行了优化。要启用此服务器类型,请使用配置您的应用程序。此服务器类型会自动设置具有内置 Project Reactor 支持的异步工具规范,spring.ai.mcp.server.type=ASYNC。

4.3 编写MCPServer服务代码

编写天气预报查询伪代码:

import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Service;

import java.util.Map;

@Service
public class WeatherService {

    @Tool(description = "根据城市名称获取天气预报")
    public String getWeatherByCity(String city) {
        Map<String, String> mockData = Map.of(
            "西安", "晴天",
            "北京", "小雨",
            "上海", "大雨"
        );
        return mockData.getOrDefault(city, "抱歉:未查询到对应城市!");
    }

}

4.4 将服务暴露出去

@Bean
public ToolCallbackProvider weatherTools(WeatherService weatherService) {
return MethodToolCallbackProvider.builder().toolObjects(weatherService).build();
}

这样 MCP Server 就编写完成了。

5.Dify调用本地MCP

Dify 调用 MCP 主要步骤如下:

  1. 安装 MCP 插件。
  2. 配置 MCP 服务 HTTP 地址。
  3. 配置 Agent 相关信息。
  4. 运行测试。

具体配置如下。

5.1 安装 MCP 插件

安装 Agent 策略(支持 MCP 工具)如下图所示:

MCP SSE 选装,非必须,可以为后续 Agent 提供 MCP 工具列表,方便 LLM 正确理解和调用工具。

5.2 配置 MCP 服务地址

Dify 只支持 HTTP 协议的 MCP 服务调用,它的配置格式如下:

{
  "server_name1": {
    "transport": "sse",
    "url": "http://127.0.0.1:8000/sse",
    "headers": {},
    "timeout": 50,
    "sse_read_timeout": 50
  },
  "server_name2": {
    "transport": "sse",
    "url": "http://127.0.0.1:8001/sse"
  },
  "server_name3": {
    "transport": "streamable_http",
    "url": "http://127.0.0.1:8002/mcp",
    "headers": {},
    "timeout": 50
  },
  "server_name4": {
    "transport": "streamable_http",
    "url": "http://127.0.0.1:8003/mcp"
  }
}

支持配置多个 MCP 服务,或者是以下 JSON 格式也支持:

{
  "mcpServers": {
      "server_name1": {
        "transport": "sse",
        "url": "http://127.0.0.1:8000/sse",
        "headers": {},
        "timeout": 50,
        "sse_read_timeout": 50
      },
      "server_name2": {
        "transport": "sse",
        "url": "http://127.0.0.1:8001/sse"
      },
      "server_name3": {
        "transport": "streamable_http",
        "url": "http://127.0.0.1:8002/mcp",
        "headers": {},
        "timeout": 50
      },
      "server_name4": {
        "transport": "streamable_http",
        "url": "http://127.0.0.1:8003/mcp"
      }
    }
}

5.3 配置 Agent

Agent 需要配置的项目比较多,首先是 Agent 策略:

然后是 LLM,选择合适的大模型即可,之后配置 MCP 工具和 HTTP 地址,如下图所示:

之后配置指令和查询问题:

5.4 测试 MCP 调用

我们创建的是一个 ChatFlow,执行效果如下:

执行符合预期。

小结

Dify 调用 MCP 服务主要依靠的是 HTTP 地址和 MCP 协议,对于用户来说他面向的是大模型,对于程序来说是大模型调用了 MCP 服务,所以大模型端也就是 MCP 的客户端。我们会调用本地 MCP 服务了,那么问题来了,如何调用通用的 MCP 服务呢?

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### DifyMCP 技术概述 Dify 是一个基于大语言模型 (LLM) 的开源平台,专注于提供多功能的应用程序开发环境[^4]。它不仅支持知识管理,还能够构建复杂的智能问答系统和其他类型的应用程序。与此同时,Anthropic 公司推出的 MCP(Model Context Protocol)是一种创新性的协议设计,旨在优化 AI 系统的表现力,在多个领域展现了其优越性[^1]。 #### 安装与配置指南 对于希望快速上手 Dify 平台的开发者而言,可以通过 Git 命令轻松获取官方仓库中的资源并完成初始化设置: ```bash git clone https://github.com/AI-FE/dify-mcp-server.git cd dify-mcp-server ``` 上述命令会帮助用户克隆最新的服务器端代码到本地环境中[^3]。之后可以根据具体需求调整参数或者扩展功能模块来满足项目目标。 #### 性能表现分析 通过实际部署案例可以看出,采用 MCP 协议可以有效提高系统的响应效率以及数据处理精度,并增强整体的安全防护能力[^2]。这些优势使得该技术成为当前人工智能领域内的热门研究方向之一。 如果遇到任何关于安装过程中的错误提示或者其他技术难题时,请参照以下几点建议尝试解决问题: - **确认网络连接状态良好**:确保下载过程中不会因为断网等原因中断操作。 - **检查依赖项版本兼容性**:部分插件可能需要特定版本的支持才能正常运行。 - **查阅社区论坛讨论记录**:很多常见问题都已经有现成解答可供参考学习。 ### 示例代码片段展示 下面给出一段简单的 Python 脚本作为演示用途,说明如何利用某些库函数简化复杂流程的操作逻辑: ```python import requests def fetch_data(url): try: response = requests.get(url, timeout=5) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to load data from {url}") except Exception as e: print(e) if __name__ == "__main__": url = "http://example-api-endpoint/data" result = fetch_data(url) if result is not None: process(result) ``` 此脚本实现了向指定 URL 发送 GET 请求的功能,并且包含了异常捕获机制以便更好地应对潜在风险情况的发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值