对标Claude Code,阿里发布最强开源模型Qwen3-Coder(附教程)

好家伙,这几天,国内这些大厂是连着发布新产品啊。

21 号,字节的 Trae 2.0 发布,全新 SOLO 邀请码一码难求。

22 号,腾讯发布首个 AI IDE 产品 CodeBuddyIDE,号称全栈 AI 工程师。

23 号,阿里开源迄今迄今为止最强大的开放代理代码模型 Qwen3-Coder-480B-A35B-Instruct 和对标 Claude Code 的 Qwen Code。

图片

太卷了叭。

本来今天分享下腾讯的 AI IDE 及邀请码的事,但有个 case 还在跑,来不及了。

先趁热乎,给大家分享下阿里开源的产品以及 Qwen3-Coder 的使用教程。

图片

文章会分以上三个部分,希望我的分享能对你有帮助,先赞再看养成良好习惯,哈哈哈。

开源模型介绍

这次开源的 Qwen3-Coder-480B-A35B-Instruct 拥有 480B  参数和 35B  的激活参数。

它是 MoE 模型,原生支持 256K token 的上下文并可通过 YaRN 扩展到 1M token,

它在多个开放模型的代理编码基准测试中均取得了顶级性能,包括 SWE-bench-Verified!

图片

最重要的是,它拥有卓越的代码和 Agent 能力,在 Agentic Coding、Agentic Browser-Use 和 Agentic Tool-Use 上取得了开源模型的 SOTA 效果,可以与 Claude Sonnet4 媲美。

模型价格方面,qwen3-coder-480b-a35b-instruct 最大输入 204,800 Token,最大输出 65,536 Token,采用阶梯计价的方式,输出成本每千 token 在 0.024-0.06 元。

图片

具体真实能力如何?下面,先看下一个经典的六边形弹力小球测试。

图片

可以看到 Qwen3-Coder 在小球重力下落后弹跳幅度明显要更符合真实物理规律的。

Case 2:愤怒的小鸟小游戏

提示词:用html做一个可直接玩的超级玛丽小游戏

图片

Qwen 3-Coder 和  Claude Sonnet 4 在这个 case 上的可玩度上都还差点意思,但 Claude 里面的马里奥根本跳不到那么高,这有点太为难了。

Case 3:APP 原型设计

图片

这个 case 可以说 Qwen 3-Coder 和  Claude Sonnet 4 不分伯仲,前端审美上也差不多。

稍微有点不同的是,Qwen 3-Coder 做成了可交互式了。

这个 case ,我觉得 Claude 更理解我的需求,是点击生成科幻霓虹动销。

整体 Qwen 3-Coder 提升了不少。

那具体的代码能力和 Agent 能力,可以通过 Qwen Code 来看看。

Qwen Code

Qwen Code 是一个改编自 Gemini CLI 的命令行 AI 工具,针对 Qwen3-Coder 模型进行了优化。

要知道,现在 Claude Code 这么火,谷歌和马斯克都在纷纷发力,下场搞了 Gemini CLI 和 Grok CLI。

国内终于也有 Code CLI 产品了,这就是阿里开源的 Qwen Code。

图片

这是 GitHub 开源地址:https://github.com/QwenLM/qwen-code

截止到发文,已经有 1.8 k 的 star 了。增长速度还是很快的。

图片

有以下几个特点:

1、查询和编辑超出通常限制的大型代码库。

2、自动执行管理拉取请求和复杂的 rebase 等任务。

3、专门针对 Qwen-Coder 模型进行了调整

那如何使用呢?

环境要求,需要本地 Node. js 版本在 20 以上。

没有  Node. js 的话也可以执行以下命令装一下:

curl -qL https://www.npmjs.com/install.sh | sh 

第一步,安装 qwen-code,一共两种方法,一种是源码方式,一种是 npm 方式,选择第二种方式更为简单。

npm install -g @qwen-code/qwen-code 

贼快,4 s 就安装好了。

图片

输入以下命令验证是否安装成功:

qwen --version 

图片

第二步,配置 API。

在阿里云百炼申请 API Key(https://bailian.console.aliyun.com/?tab=model#/api-key)

图片

然后复制这个配置到终端:

export OPENAI_API_KEY="上面获取到的sk开头的key"
export OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_MODEL="qwen3-coder-plus"

可以终端中输入 env 查看配置是否已经加上。

图片

这样输入:qwen,就可以启动啦。

同样,先进行主题的选择:

图片

确定后,需要先退出,再重登一次进入,就好啦。

图片

测试一下效果,让他生成 3D 演示动画:

图片

让它直接将视频转为 GIF

视频我没有加倍速,其实整体还是挺快的。整个操作消耗 Tokens情况如下:

图片

我看GitHub的 issure上有人遇到 token 消耗很猛,导致扣费严重的问题,我用的是商业版的 qwen3-coder-plus,而网友用的是开源版本的 Qwen3-Coder-480B-a35B-Instruct。

图片

对比了下 Claude COde 的 token 消耗,大家可以自行感受下:

图片

在 Claude Code 中使用

除了可以独立使用 Qwen Code 外,还可以在 Claude Code 中使用,就像当初的 Kimi K2 一样。

只需要将Anthropic的base url替换成dashscope上提供的endpoint即可。

export ANTHROPIC_BASE_URL="https://dashscope.aliyuncs.com/api/v2/apps/claude-code-proxy"
export ANTHROPIC_AUTH_TOKEN="百炼上的API"

同样在 CC 中跑 Qwen ,看看生成的效果。

图片

不过,测下来,感觉在 Claude Code 中使用 Qwen Code 指定遵循更好。

会自动创建 todo list:

图片

这次,Qwen3-Coder 在代码能力和 Agent 能力上有了很大的进步。

特别是前端审美及能力,基本和 Claude Sonnet 没啥差别了,而且有些场景还更好些。

但 Qwen Code 这个终端工具 token 的消耗太猛这事,官方得注意看看排查排查。

不然,谁敢用啊,希望尽快修复,这样,我们就有了更多的选择。

任你 Claude 再封,也并不是非你不可了。不过还是得加油,在编程和 Agent 能力提升上,希望来的更猛一些。

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

### 不同AI模型的评测成绩和性能对比 #### DeepSeek-V3 vs Qwen2.5-72B DeepSeek-V3是一个拥有671B参数的大规模语言模型,而Qwen2.5则有72B参数。在多个基准测试中,DeepSeek-V3的表现优于GPT-4o和Claude-3.5 Sonnet,在某些特定任务上的表现尤为突出[^1]。相比之下,尽管Qwen2.5的参数量较小,但在一些自然语言理解任务上依然表现出色,并且由于其开源特性,受到了社区的高度关注和支持。 #### DeepSeek-V3 vs Llama-3.1-405B Llama-3.1具有405B参数,介于DeepSeek-V3Qwen2.5之间。然而,DeepSeek-V3采用了先进的混合专家(MoE)架构,使得每个token仅激活约37B参数,从而提高了计算效率并增强了模型的能力。这种设计让DeepSeek-V3能够在资源有限的情况下提供更高效的推理服务,同时也保持了较高的准确性[^2]。 #### DeepSeek-V3 vs GPT-4o 作为一款闭源产品,关于GPT-4o的具体实现细节较少公开披露。但从已有的评估来看,DeepSeek-V3已经在多项指上超越了这一版本的GPT系列模型。特别是在涉及复杂语境理解和多轮对话的任务场景下,DeepSeek-V3展现了更强的理解力和响应质量。 #### DeepSeek-V3 vs Claude-3.5-Sonnet 同样属于闭源阵营的一员,Claude-3.5 Sonnet也是一款备受瞩目的大语言模型。不过根据现有资料,DeepSeek-V3无论是在参数规模还是实际应用效果方面均有所领先。尤其是在跨领域迁移学习能力以及对新兴话题的学习速度等方面,DeepSeek-V3显示出明显的优势。 ```python import matplotlib.pyplot as plt models = ['DeepSeek-V3', 'Qwen2.5-72B', 'Llama-3.1-405B', 'GPT-4o', 'Claude-3.5'] params = [671, 72, 405, None, None] plt.bar(models, params) plt.xlabel('Model') plt.ylabel('Parameters (in Billions)') plt.title('Parameter Comparison of Different AI Models') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值