Dify 开源平台介绍
Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在帮助开发者快速从原型迭代到生产环境,轻松构建具备企业级能力的 AI 应用。其核心优势在于将直观的可视化操作与强大的技术功能相结合,覆盖了 AI 工作流、检索增强生成(RAG)、智能代理(Agent)等关键环节。
核心功能
-
可视化工作流设计
通过拖拽式画布构建复杂的 AI 工作流,支持整合模型调用、数据处理、条件判断等步骤,无需深入编码即可实现多步骤逻辑。 -
全面的模型支持
无缝集成数百种开源及商用 LLM,包括 GPT、Mistral、Llama3、Gemini 等,并兼容所有 OpenAI API 格式的模型。支持的推理服务商涵盖 OpenAI、Anthropic、阿里云通义千问、华为盘古等数十家,满足多样化场景需求。 -
Prompt 开发环境
提供直观的 Prompt 编辑器,支持实时对比不同模型的输出效果,还可一键添加文本转语音等扩展功能,快速优化对话类应用。 -
强大的 RAG pipeline
从文档 ingestion 到检索全流程覆盖,原生支持 PDF、PPT 等多种格式的文本提取,轻松实现基于私有数据的精准问答。 -
智能代理(Agent)能力
支持基于 LLM 函数调用(Function Calling)或 ReAct 框架定义代理,提供 50+ 内置工具(如谷歌搜索、DALL・E 图像生成、WolframAlpha 计算等),也可自定义工具扩展功能。 -
LLMOps 监控与优化
内置可观测性工具,实时监控应用日志和性能指标,基于生产数据持续优化提示词、数据集和模型选择。 -
后端即服务(BaaS)
所有功能均提供对应 API,便于无缝集成到现有业务系统,加速 AI 能力落地。
部署与使用方式
- 云服务
:通过 Dify Cloud 零配置体验,沙箱计划包含 200 次免费 GPT-4 调用。
- 自托管
:支持 Docker Compose 快速部署,最低要求 2 核 CPU + 4GB 内存;也可通过 Helm Chart 在 Kubernetes 上实现高可用部署,或利用 Terraform、AWS CDK 等工具一键部署到主流云平台。
- 企业版
:提供单点登录(SSO)、访问控制等企业级功能,支持 AWS Marketplace 一键部署并自定义品牌标识。
与同类工具对比
特性 |
Dify.AI |
LangChain |
Flowise |
OpenAI Assistants API |
---|---|---|---|---|
开发方式 |
API + 可视化应用 |
Python 代码 |
可视化应用 |
纯 API |
模型支持 |
多类型全覆盖 |
多类型全覆盖 |
多类型全覆盖 |
仅限 OpenAI 模型 |
企业级功能 |
✅ |
❌ |
❌ |
❌ |
本地部署 |
✅ |
✅ |
✅ |
❌ |
社区与生态
-
开源协议:基于 Apache 2.0 扩展的 Dify 开源许可,允许自由使用和二次开发。
-
社区支持:GitHub 上拥有 2.6k+ Star,每月 356+ 次代码提交,活跃的 Discord 社区和 GitHub 讨论区提供技术支持。
-
多语言支持:文档已翻译成 15+ 种语言,包括中文、英文、日文、韩文等,欢迎贡献新语言翻译。
无论是初创公司快速验证 AI 想法,还是企业级应用规模化落地,Dify 都能提供灵活且高效的解决方案,降低 AI 应用开发的技术门槛。
项目地址
官方文档:https://dify.ai
github地址:https://github.com/langgenius/dify
测试环境
自配飞牛NAS:J1900CPU/8G内存/120G SSD
docker:version: 26.0.0
docker-compse:version v2.29.2
部署教程
NAS进入ssh提权sudo -i,输入密码
1.git clone https://github.com/langgenius/dify.git
2.cd dify/docker
3.cp .env.example .env
4.修改端口,因为我的NAS docker端口已经被占用,我只修改了80,443我直接删除了。安装时报错
5.docker compose up -d,启动容器项目
6.初始化管理员账号
7.进入dashboard
8.工具还很多,自己安装添加
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取