一款开源的大语言模型(LLM)应用开发平台-Dify

Dify 开源平台介绍

Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在帮助开发者快速从原型迭代到生产环境,轻松构建具备企业级能力的 AI 应用。其核心优势在于将直观的可视化操作与强大的技术功能相结合,覆盖了 AI 工作流、检索增强生成(RAG)、智能代理(Agent)等关键环节。

核心功能

  1. 可视化工作流设计
    通过拖拽式画布构建复杂的 AI 工作流,支持整合模型调用、数据处理、条件判断等步骤,无需深入编码即可实现多步骤逻辑。

  2. 全面的模型支持
    无缝集成数百种开源及商用 LLM,包括 GPT、Mistral、Llama3、Gemini 等,并兼容所有 OpenAI API 格式的模型。支持的推理服务商涵盖 OpenAI、Anthropic、阿里云通义千问、华为盘古等数十家,满足多样化场景需求。

  3. Prompt 开发环境
    提供直观的 Prompt 编辑器,支持实时对比不同模型的输出效果,还可一键添加文本转语音等扩展功能,快速优化对话类应用。

  4. 强大的 RAG pipeline
    从文档 ingestion 到检索全流程覆盖,原生支持 PDF、PPT 等多种格式的文本提取,轻松实现基于私有数据的精准问答。

  5. 智能代理(Agent)能力
    支持基于 LLM 函数调用(Function Calling)或 ReAct 框架定义代理,提供 50+ 内置工具(如谷歌搜索、DALL・E 图像生成、WolframAlpha 计算等),也可自定义工具扩展功能。

  6. LLMOps 监控与优化
    内置可观测性工具,实时监控应用日志和性能指标,基于生产数据持续优化提示词、数据集和模型选择。

  7. 后端即服务(BaaS)
    所有功能均提供对应 API,便于无缝集成到现有业务系统,加速 AI 能力落地。

部署与使用方式

  • 云服务

    :通过 Dify Cloud 零配置体验,沙箱计划包含 200 次免费 GPT-4 调用。

  • 自托管

    :支持 Docker Compose 快速部署,最低要求 2 核 CPU + 4GB 内存;也可通过 Helm Chart 在 Kubernetes 上实现高可用部署,或利用 Terraform、AWS CDK 等工具一键部署到主流云平台。

  • 企业版

    :提供单点登录(SSO)、访问控制等企业级功能,支持 AWS Marketplace 一键部署并自定义品牌标识。

与同类工具对比

特性

Dify.AI

LangChain

Flowise

OpenAI Assistants API

开发方式

API + 可视化应用

Python 代码

可视化应用

纯 API

模型支持

多类型全覆盖

多类型全覆盖

多类型全覆盖

仅限 OpenAI 模型

企业级功能

本地部署

社区与生态

  • 开源协议:基于 Apache 2.0 扩展的 Dify 开源许可,允许自由使用和二次开发。

  • 社区支持:GitHub 上拥有 2.6k+ Star,每月 356+ 次代码提交,活跃的 Discord 社区和 GitHub 讨论区提供技术支持。

  • 多语言支持:文档已翻译成 15+ 种语言,包括中文、英文、日文、韩文等,欢迎贡献新语言翻译。

无论是初创公司快速验证 AI 想法,还是企业级应用规模化落地,Dify 都能提供灵活且高效的解决方案,降低 AI 应用开发的技术门槛。

项目地址

官方文档:https://dify.ai

github地址:https://github.com/langgenius/dify

测试环境

自配飞牛NAS:J1900CPU/8G内存/120G SSD

docker:version: 26.0.0

docker-compse:version v2.29.2

部署教程

图片

NAS进入ssh提权sudo -i,输入密码

1.git clone https://github.com/langgenius/dify.git

2.cd dify/docker

3.cp .env.example .env

图片

4.修改端口,因为我的NAS docker端口已经被占用,我只修改了80,443我直接删除了。安装时报错

图片

5.docker compose up -d,启动容器项目

图片

6.初始化管理员账号

图片

7.进入dashboard

图片

8.工具还很多,自己安装添加

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值