在当前的技术环境下,大型语言模型(LLMs)已经成为人工智能领域的一个重要里程碑。这些模型能够在各种任务上展现出人类水平的性能,包括但不限于文本生成、语言理解和问题解答。随着开源项目的发展,个人开发者现在有机会在本地部署这些强大的模型,以探索和利用它们的潜力。
本文将详细介绍如何使用Ollama,一个开源项目,在Mac上本地运行大型模型(Win同理)。通过遵循以下步骤,即使是配备了几年前硬件的电脑,也能够顺利完成部署和运行。
第一步:下载和安装Ollama
- 以 mac 为例,访问Ollama的Mac下载页面,您会看到如下所示的下载页面:下载网页地址
- 下载完成后,双击解压软件,您将看到应用安装界面,如下图所示::
第二步:下载模型并运行 mistral-7b 大模型
- 打开终端,输入命令
ollama run mistral
以启动Ollama并下载所需的大型模型,下图显示了mistral-7b
模型的下载过程,
- 下载完成后,您可以像下图所示运行Ollama,并询问例如“why sky id blue?”的问题,以测试模型的响应:
第三步:设置前端界面和Docker环境
- 下载前端页面。在终端中运行以下命令,克隆open-webui前端项目:
perl
git clone https://github.com/open-webui/open-webui.git
- 使用以下命令下载并运行Docker镜像,为Ollama设置一个前端界面:
kotlin
cd open-webui
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
- 打开浏览器,输入网址http://localhost:3000/,选择您刚下载的模型
mistral:latest (3.8GB)
,即可开始探索大型模型的强大功能。
此外,对于那些关注电脑配置的用户,以下是一个配置示例,表明即使是老旧的电脑也能够运行这些大型模型,本指南使用的电脑配置如图
通过遵循这个指南,任何拥有基本计算机技能的用户都可以在本地部署和运行大型模型,进一步探索人工智能的前沿技术。这不仅为开发者提供了一个实验和学习的平台,也为研究人员和爱好者提供了一个探索AI模型潜力的机会。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材
,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程
,深挖痛点并持续修改了近100余次
后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一
您不需要具备任何算法和数学的基础
第二
不要求准备高配置的电脑
第三
不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包分享出来
, 😝有需要的小伙伴,可以 扫描下方二维码领取
🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的
核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源
已经整理打包,有需要的小伙伴可以微信扫描下方二维码
,免费领取