惊艳了!54k的Dify大模型Windows上一键部署,连小白也能驾驭的AI开发神器

"老板,我们小团队想做个AI应用,但是预算有限..."

"别提了,我试过部署开源模型,环境配置折腾了一周还没搞定..."

"听说开发AI应用要会Python,我连编程都不会,这可怎么办?"

如果你也有类似烦恼,那么今天这篇文章将为你打开一扇新的大门 —— Dify,一个让AI应用开发变得前所未有简单的开源平台。

一、为什么Dify能让人惊艳?

还记得去年爆火的ChatGPT吗?它让我们看到了AI的力量。但要把AI能力整合到自己的产品中,对于大多数人来说仍然遥不可及。直到Dify的出现,改变了这一切。

  • 零代码开发:拖拽式操作界面,告别繁琐的编程

  • 一键部署:Windows环境就能运行

  • 开源免费:所有核心功能完全开放,无任何限制

  • 中文优化:完整的中文界面和文档支持

二、小白也能搞定的部署攻略

第一步:基础环境准备

  • Windows 10/11系统

  • 16GB以上内存(推荐32GB)

  • 下载Dify安装包

  • Window提前安装Ollama

  • Windows上提前安装DockerDesktop

第二步:Docker Desktop中部署Dify

① 下载地址:

https://github.com/langgenius/dify

图片

② 下载Dify源码到本地

下载dify代码到本地,解压代码进入docker路径:E:\dev\dify\docker,注意:E:\dev\是解压路径,自行定义。

图片

复制.env.example文件,修改为.env

图片

cmd命令窗口进入

执行:docker compose up -d

图片

图片

第三步:进入Docker Desktop中启动

图片

拉取部署执行完毕!

三、Dify配置->选择大模型->创建应用->测试

第一步:Dify配置

浏览器访问:http://localhost/install

图片

图片

图片

第二步:Dify选择配置模型供应商

(1) 点击右上角的头像,选择设置唤出设置对话框:

图片

(2) 点击左侧菜单栏中的模型供应商选择Ollama

图片

(3) 添加Ollama步骤:

模型名称我们填入:qwen:7b
基础 URL 填入:http://host.docker.internal:11434
其他选项:根据自己的需求进行配置,或者也可以保持默认
然后保存即可

图片

图片

第三步:Dify创建应用-设置模型

图片

图片

第四步:Dify测试对话

图片

大功告成!!!

正如比尔·盖茨说:"我们总是高估一年能发生的变化,却低估十年能发生的变化。"Dify的出现,让AI民主化提前到来,为无数企业和个人带来了新的可能。

现在,就让我们一起拥抱这个AI新时代,用Dify构建属于自己的AI应用吧!

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

<think>好的,用户之前询问过在Dify 1.0.1中添加Ollama本地大模型失败的问题,现在他们遇到了新的情况:11434端口可以连通,但在添加时仍然报错连接不上。我需要仔细分析可能的原因。 首先,用户已经确认Ollama服务在本地运行,并且通过curl测试端口连通性没问题。这说明基础网络连接没有问题,所以需要进一步排查其他可能性。 接下来,可能的错误点有几个方向: 1. **API端点路径是否正确**:Ollama的API路径可能有变化,用户可能在Dify中填写了错误的路径。例如,Dify可能需要特定的API端点,如`/api/generate`,而用户可能只填写了基础URL。 2. **模型名称是否正确**:用户是否在Dify中正确填写了Ollama中已下载的模型名称?大小写或拼写错误可能导致请求失败。 3. **权限问题**:虽然服务运行在本地,但Dify可能有不同的执行环境,比如Docker容器,导致无法访问宿主机的localhost。这时需要使用宿主机的IP地址而不是localhost。 4. **请求头或认证问题**:Ollama可能需要特定的请求头或API密钥,而Dify的配置中没有正确设置这些参数。 5. **Ollama版本兼容性**:用户使用的Ollama版本可能与Dify存在兼容性问题,需要检查版本要求。 6. **防火墙或安全软件**:虽然端口测试通过,但某些安全软件可能阻止了Dify应用的网络请求。 7. **查看详细日志**:用户需要检查Dify和Ollama的日志,寻找更具体的错误信息,例如超时、认证失败或路径错误。 在处理这类问题时,逐步排查是关键。首先建议用户检查API路径和模型名称是否正确,然后考虑网络环境,尤其是Dify是否运行在容器中。接下来,验证请求的完整性和权限设置,最后通过日志定位具体错误。如果这些步骤无效,建议用户提供更多日志细节以便进一步分析。</think>当 `11434` 端口已确认连通(如通过 `curl http://localhost:11434` 测试正常),但 Dify 添加 Ollama 模型时仍报错连接失败,可能是由以下更具体的原因导致: --- ### 1. **Ollama API 端点路径错误** - **现象**:虽然端口通,但 Dify 需要调用具体的 API 路径(例如 `/api/generate`),而用户可能只填写了基础 URL。 - **解决方案**: - 检查 Dify 的配置中是否完整填写了 Ollama 的 API 地址,例如:`http://localhost:11434/api/generate`(根据 Ollama 文档确认具体路径)。 - 如果 Dify 要求分开填写 `Base URL` 和 `Model Name`,确保 `Base URL` 是 `http://localhost:11434`,模型名称与 Ollama 中实际加载的名称一致。 --- ### 2. **模型名称未正确加载** - **现象**:Ollama 服务已启动,但未加载目标模型,或模型名称在 Dify 中拼写错误。 - **解决方案**: 1. 运行 `ollama list` 查看已下载的模型列表,确认模型名称(区分大小写)。 2. 在 Dify 的模型配置中严格匹配名称,例如 Ollama 中模型名为 `llama3:8b`,Dify 需填写 `llama3:8b`。 --- ### 3. **Dify 与 Ollama 的网络隔离问题** - **现象**:Dify 运行在 Docker 容器或其他隔离环境中,无法通过 `localhost` 访问宿主机的 Ollama。 - **解决方案**: - 若 Dify 部署在 Docker 中: - 使用宿主机的 IP 地址(如 `http://192.168.x.x:11434`)代替 `localhost`。 - 检查 Docker 网络模式是否为 `host` 或已配置端口映射。 - 本地直接运行时,确认 Dify 和 Ollama 使用相同用户权限运行。 --- ### 4. **Ollama 的 API 请求格式问题** - **现象**:Dify 发送的请求不符合 Ollama 的 API 规范(如请求头、参数缺失)。 - **解决方案**: - 对比 Ollama 官方 API 文档(如 `/api/generate` 的请求格式),检查 Dify 的配置中是否包含必填字段(如 `model`, `prompt`, `stream`)。 - 尝试通过 `curl` 手动发送请求,验证是否能成功调用: ```bash curl http://localhost:11434/api/generate -d '{ "model": "llama3:8b", "prompt": "Hello", "stream": false }' ``` --- ### 5. **Dify 配置的额外参数冲突** - **现象**:Dify 的模型配置中可能包含与 Ollama 不兼容的参数(如 `temperature` 范围超限、`max_tokens` 过大)。 - **解决方案**: - 简化配置,仅填写必填参数(模型名称、API URL)。 - 逐步添加参数测试,观察是否因某个参数触发错误。 --- ### 6. **Ollama 版本或模型兼容性问题** - **现象**:Ollama 更新后 API 变更,或 Dify 未适配新版 Ollama。 - **解决方案**: - 检查 Ollama 和 Dify 的版本兼容性,回退到稳定版本组合。 - 查看 Dify 社区是否有人反馈类似问题(如 GitHub Issues)。 --- ### 7. **查看详细错误日志** - **关键步骤**: 1. **Dify 日志**:在 Dify 的服务日志中搜索 `ollama` 相关的报错(如连接超时、401 认证失败)。 2. **Ollama 日志**:通过 `ollama serve` 启动服务,观察请求是否到达及具体错误响应。 - 示例错误: ```log ERROR: Failed to load model 'llama3:8b' (error: model not found) ``` --- ### 总结步骤 1. **验证手动请求**:用 `curl` 或 Postman 直接调用 Ollama API,确保模型能正常响应。 2. **简化 Dify 配置**:仅填写必要字段,排除参数干扰。 3. **检查网络隔离**:确保 Dify 能通过 IP 而非 `localhost` 访问 Ollama。 4. **核对版本和文档**:确认 Ollama 和 Dify 的版本匹配,且配置符合最新要求。 如果问题仍未解决,建议提供 **Dify 的报错截图** 和 **Ollama 日志片段**,以便进一步分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值