"老板,我们小团队想做个AI应用,但是预算有限..."
"别提了,我试过部署开源模型,环境配置折腾了一周还没搞定..."
"听说开发AI应用要会Python,我连编程都不会,这可怎么办?"
如果你也有类似烦恼,那么今天这篇文章将为你打开一扇新的大门 —— Dify,一个让AI应用开发变得前所未有简单的开源平台。
一、为什么Dify能让人惊艳?
还记得去年爆火的ChatGPT吗?它让我们看到了AI的力量。但要把AI能力整合到自己的产品中,对于大多数人来说仍然遥不可及。直到Dify的出现,改变了这一切。
-
零代码开发:拖拽式操作界面,告别繁琐的编程
-
一键部署:Windows环境就能运行
-
开源免费:所有核心功能完全开放,无任何限制
-
中文优化:完整的中文界面和文档支持
二、小白也能搞定的部署攻略
第一步:基础环境准备
-
Windows 10/11系统
-
16GB以上内存(推荐32GB)
-
下载Dify安装包
-
Window提前安装Ollama
-
Windows上提前安装DockerDesktop
第二步:Docker Desktop中部署Dify
① 下载地址:
https://github.com/langgenius/dify
② 下载Dify源码到本地
下载dify代码到本地,解压代码进入docker路径:E:\dev\dify\docker,注意:E:\dev\是解压路径,自行定义。
复制.env.example文件,修改为.env
cmd命令窗口进入
执行:docker compose up -d
第三步:进入Docker Desktop中启动
拉取部署执行完毕!
三、Dify配置->选择大模型->创建应用->测试
第一步:Dify配置
浏览器访问:http://localhost/install
第二步:Dify选择配置模型供应商
(1) 点击右上角的头像,选择设置唤出设置对话框:
(2) 点击左侧菜单栏中的模型供应商选择Ollama
(3) 添加Ollama步骤:
模型名称我们填入:qwen:7b
基础 URL 填入:http://host.docker.internal:11434
其他选项:根据自己的需求进行配置,或者也可以保持默认
然后保存即可
第三步:Dify创建应用-设置模型
第四步:Dify测试对话
大功告成!!!
正如比尔·盖茨说:"我们总是高估一年能发生的变化,却低估十年能发生的变化。"Dify的出现,让AI民主化提前到来,为无数企业和个人带来了新的可能。
现在,就让我们一起拥抱这个AI新时代,用Dify构建属于自己的AI应用吧!
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取