【二分】-----【四值零和】

四值零和

题目链接


题目描述

对于给定的 n n n 行 4 列的矩阵,我们定义一个“四值零和”的四元组 a , b , c , d {a,b,c,d} a,b,c,d 为第一列第 a a a 行、第二列第 b b b 行、第三列第 c c c 行、第四列第 d d d 行的元素,满足这四个元素之和恰好为 0 0 0

请统计出该矩阵中有多少个不同的“四值零和”的四元组。


输入描述

第一行输入一个整数 n n n ( 1 ≤ n ≤ 2500 ) (1 \leq n \leq 2500) (1n2500) 代表矩阵行数。

此后 n n n 行,第 i i i 行输入四个整数 a i , 1 , a i , 2 , a i , 3 , a i , 4 a_{i,1}, a_{i,2}, a_{i,3}, a_{i,4} ai,1,ai,2,ai,3,ai,4 ( − 2 28 ≤ a i , j ≤ 2 28 ) (-2^{28} \leq a_{i,j} \leq 2^{28}) (228ai,j228),代表矩阵中第 i i i 行的四个元素。


输出描述

在一行上输出一个整数,代表“四值零和”的四元组数量。


示例一

输入:

2
1 1 1 -3
-1 1 1 3

输出:

4

说明:

在这个样例中,只有 1 + 1 + 1 − 3 = 0 1 + 1 + 1 - 3 = 0 1+1+13=0 是等于 0 的。

所以一共有四个不同的“四值零和”的四元组:

  • 1 , 1 , 1 , 1 {1,1,1,1} 1,1,1,1
  • 1 , 1 , 2 , 1 {1,1,2,1} 1,1,2,1
  • 1 , 2 , 1 , 1 {1,2,1,1} 1,2,1,1
  • 1 , 2 , 2 , 1 {1,2,2,1} 1,2,2,1

示例二

输入:

3
1 1 1 -3
-1 1 1 3
1 -1 1 3

输出:

12

说明:

在这个样例中,答案即为 2 × 2 × 3 × 1 = 12 2 \times 2 \times 3 \times 1 = 12 2×2×3×1=12


示例三

输入:

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

输出:

5

题解(折半枚举 + 二分查找)

一、思路分析

1. 暴力四重循环(TLE)

最朴素的方法就是暴力枚举四元组,即:

  • 遍历 n 4 n^4 n4 种组合,分别从每列中任选一行取出一个数,相加判断是否为 0。
  • 时间复杂度是 O ( n 4 ) O(n^4) O(n4),显然在 n = 2500 n = 2500 n=2500 的规模下不可行,会超时。

2. 折半优化(经典的 4Sum II 问题)

我们可以利用经典的折半枚举 + 二分查找技巧,将四维搜索空间降为二维:

  • 枚举前两列的组合: a i + b j a_i + b_j ai+bj
  • 枚举后两列的组合: c k + d l c_k + d_l ck+dl
  • 然后问题转化为:在所有的 c + d c+d c+d 中,查找有多少个等于 − ( a + b ) -(a+b) (a+b) 的值

这种方式的核心思想是:

  • O ( n 4 ) O(n^4) O(n4) 的复杂度变成两次 O ( n 2 ) O(n^2) O(n2) 的枚举 + 排序 + 二分
  • 总体时间复杂度: O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn)

六、算法流程

  1. 将每对 ( a i , b j ) (a_i, b_j) (ai,bj) 的和保存到数组 en12 中;
  2. 将每对 ( c k , d l ) (c_k, d_l) (ck,dl) 的和保存到数组 en34 中;
  3. en34 排序;
  4. 对于 en12 中的每个值 x,在 en34 中用二分查找统计 − x -x x 出现的次数,累加到答案中。

七、代码实现(带详细注释)

#include <bits/stdc++.h>
#define int long long
using namespace std;

// 该函数负责枚举两个指定列(x 列和 y 列)所有可能的两数之和,并存入 ender 向量中
// ender:用于存放结果的容器
// nums:存储 n 行 4 列矩阵的二维数组
// x, y:表示当前要组合的两列(1~4)
// n:矩阵的行数
void pin(vector<int>& ender, vector<vector<int>> nums, int x, int y, int n)
{
    for(int i = 1; i <= n; i++)         // 遍历第一个数所在的行
    {
        for(int j = 1; j <= n; j++)     // 遍历第二个数所在的行
        {
            // 将第 i 行第 x 列 与 第 j 行第 y 列 的和计算出来
            int count = nums[i][x] + nums[j][y];
            ender.push_back(count);     // 保存所有 a[i] + b[j] 或 c[i] + d[j]
        }
    }
}

signed main()
{
    int n;
    cin >> n;  // 读取矩阵的行数

    // 创建二维数组 nums,大小为 (n+1) 行、5 列(方便使用 1-based 下标)
    vector<vector<int>> nums(n + 1, vector<int>(5, 0));

    // 读入矩阵中的每行 4 个元素:a[i][1] ~ a[i][4]
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= 4; j++)
        {
            cin >> nums[i][j];
        }
    }

    // en12 存放所有 a[i][1] + a[j][2] 的组合,即 A 列与 B 列的所有两数之和
    // en34 存放所有 a[i][3] + a[j][4] 的组合,即 C 列与 D 列的所有两数之和
    vector<int> en12;
    vector<int> en34;
    pin(en12, nums, 1, 2, n);
    pin(en34, nums, 3, 4, n);

    // 为了后续使用二分查找,先对 en34 排序
    sort(en34.begin(), en34.end());

    int ender = 0;  // 用于记录符合条件(四数之和为 0)的四元组总数

    // 遍历 en12 中的每一个两数之和 s,查找有多少个 -s 存在于 en34 中
    for(int i = 0; i < en12.size(); i++)
    {
        // 利用二分查找,找到 en34 中值等于 -en12[i] 的个数:
        // upper_bound 返回大于 -s 的第一个元素的迭代器位置
        // lower_bound 返回第一个大于等于 -s 的位置
        // 二者差即为等于 -s 的元素个数
        ender += (upper_bound(en34.begin(), en34.end(), -en12[i])
                - lower_bound(en34.begin(), en34.end(), -en12[i]));
    }

    // 输出符合 a[i][1] + a[j][2] + a[k][3] + a[l][4] == 0 的四元组个数
    cout << ender;

    return 0;
}


八、复杂度分析

步骤复杂度
枚举 en12、en34 各 n 2 n^2 n2 O ( n 2 ) O(n^2) O(n2)
对 en34 排序 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn)
每个 en12 项二分查找 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn)
总复杂度 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn)

九、总结

  • 本题是一个经典的高维枚举降维问题,等价于 4Sum II;
  • 暴力四重循环不可行,应采用分组 + 排序 + 二分查找优化;
  • 技巧核心在于:枚举 a + b a+b a+b,查找 − ( c + d ) -(c+d) (c+d),或反过来均可;
  • 本题使用 STL 提供的 lower_boundupper_bound,简洁高效。

杂谈(折半枚举 +哈希查找)

注意:对于本题来讲,会爆空间,但是是一个比较好的思路


使用 哈希表优化“二分查找”部分,将时间复杂度可以进一步简化为:

枚举两两组合( O ( n 2 ) O(n^2) O(n2)) + 哈希查表( O ( 1 ) O(1) O(1)) = 总体 O ( n 2 ) O(n^2) O(n2) 级别,无排序,常数更小,速度更快。


一、核心思想(哈希优化 vs 二分)

在之前的做法中,我们是这样操作的:

  • 枚举所有 A [ i ] + B [ j ] A[i] + B[j] A[i]+B[j],存到数组 en12
  • 枚举所有 C [ k ] + D [ l ] C[k] + D[l] C[k]+D[l],存到数组 en34 并排序;
  • 对于每个 x x x in en12,二分查找 en34 中有多少个 − x -x x

现在我们换一种方式:

1.1哈希版本的做法:

  • 第一阶段:枚举所有 A [ i ] + B [ j ] A[i] + B[j] A[i]+B[j],统计出现次数,存入哈希表 map<int, int>
  • 第二阶段:枚举所有 C [ i ] + D [ j ] C[i] + D[j] C[i]+D[j],直接查找哈希表中是否存在 − ( C [ i ] + D [ j ] ) -(C[i] + D[j]) (C[i]+D[j]),若存在则加上其出现次数。

二、完整代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;

signed main()
{
    int n;
    cin >> n;  // 读入矩阵行数

    // 创建一个 (n+1) × 5 的二维数组,1-based 下标,方便后续处理
    vector<vector<int>> nums(n + 1, vector<int>(5, 0));

    // 读入每一行的 4 个元素,存入 nums[i][1~4]
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= 4; j++)
        {
            cin >> nums[i][j];
        }
    }

    // 哈希表,用于统计 nums[i][1] + nums[j][2] 的所有和及其出现次数
    unordered_map<int, int> sums;

    int ender = 0;  // 记录最后结果:满足条件的四元组个数

    // 枚举所有 (A[i], B[j]) 的组合,计算 a + b 的值并计数
    for(int i = 1; i <= n; i++)         
    {
        for(int j = 1; j <= n; j++)    
        {
            int count = nums[i][1] + nums[j][2];  // 计算第一列和第二列对应元素之和
            sums[count]++;  // 记录这个和出现的次数
        }
    }
    
    // 枚举所有 (C[i], D[j]) 的组合,查找是否存在 a + b = -(c + d)
    for(int i = 1; i <= n; i++)         
    {
        for(int j = 1; j <= n; j++)    
        {
            int count = nums[i][3] + nums[j][4];  // 计算第三列和第四列对应元素之和
            ender += sums[-count];  // 查找是否存在 a+b == - (c+d),并累加次数
        }
    }

    // 输出满足四数之和为 0 的四元组个数
    cout << ender;
    return 0;
}


三、时间复杂度分析

步骤时间复杂度
枚举 C [ i ] + D [ j ] C[i] + D[j] C[i]+D[j] O ( n 2 ) O(n^2) O(n2)
枚举 A [ i ] + B [ j ] A[i] + B[j] A[i]+B[j] + 查表 O ( n 2 ) O(n^2) O(n2)
总计 O ( n 2 ) O(n^2) O(n2)

相比排序 + 二分的 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn),哈希表方案常数更小,速度更快,但是对于大数据量会爆空间。


三、总结

方法是否排序是否二分是否哈希复杂度优劣说明
排序 + 二分 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn)稳定,适用于不支持哈希环境
哈希查表法 O ( n 2 ) O(n^2) O(n2)更快,适用于小数据量环境

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值