四值零和
题目描述
对于给定的 n n n 行 4 列的矩阵,我们定义一个“四值零和”的四元组 a , b , c , d {a,b,c,d} a,b,c,d 为第一列第 a a a 行、第二列第 b b b 行、第三列第 c c c 行、第四列第 d d d 行的元素,满足这四个元素之和恰好为 0 0 0。
请统计出该矩阵中有多少个不同的“四值零和”的四元组。
输入描述
第一行输入一个整数 n n n, ( 1 ≤ n ≤ 2500 ) (1 \leq n \leq 2500) (1≤n≤2500) 代表矩阵行数。
此后 n n n 行,第 i i i 行输入四个整数 a i , 1 , a i , 2 , a i , 3 , a i , 4 a_{i,1}, a_{i,2}, a_{i,3}, a_{i,4} ai,1,ai,2,ai,3,ai,4, ( − 2 28 ≤ a i , j ≤ 2 28 ) (-2^{28} \leq a_{i,j} \leq 2^{28}) (−228≤ai,j≤228),代表矩阵中第 i i i 行的四个元素。
输出描述
在一行上输出一个整数,代表“四值零和”的四元组数量。
示例一
输入:
2
1 1 1 -3
-1 1 1 3
输出:
4
说明:
在这个样例中,只有 1 + 1 + 1 − 3 = 0 1 + 1 + 1 - 3 = 0 1+1+1−3=0 是等于 0 的。
所以一共有四个不同的“四值零和”的四元组:
- 1 , 1 , 1 , 1 {1,1,1,1} 1,1,1,1
- 1 , 1 , 2 , 1 {1,1,2,1} 1,1,2,1
- 1 , 2 , 1 , 1 {1,2,1,1} 1,2,1,1
- 1 , 2 , 2 , 1 {1,2,2,1} 1,2,2,1
示例二
输入:
3
1 1 1 -3
-1 1 1 3
1 -1 1 3
输出:
12
说明:
在这个样例中,答案即为 2 × 2 × 3 × 1 = 12 2 \times 2 \times 3 \times 1 = 12 2×2×3×1=12。
示例三
输入:
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
输出:
5
题解(折半枚举 + 二分查找)
一、思路分析
1. 暴力四重循环(TLE)
最朴素的方法就是暴力枚举四元组,即:
- 遍历 n 4 n^4 n4 种组合,分别从每列中任选一行取出一个数,相加判断是否为 0。
- 时间复杂度是 O ( n 4 ) O(n^4) O(n4),显然在 n = 2500 n = 2500 n=2500 的规模下不可行,会超时。
2. 折半优化(经典的 4Sum II 问题)
我们可以利用经典的折半枚举 + 二分查找技巧,将四维搜索空间降为二维:
- 枚举前两列的组合: a i + b j a_i + b_j ai+bj
- 枚举后两列的组合: c k + d l c_k + d_l ck+dl
- 然后问题转化为:在所有的 c + d c+d c+d 中,查找有多少个等于 − ( a + b ) -(a+b) −(a+b) 的值
这种方式的核心思想是:
- 将 O ( n 4 ) O(n^4) O(n4) 的复杂度变成两次 O ( n 2 ) O(n^2) O(n2) 的枚举 + 排序 + 二分
- 总体时间复杂度: O ( n 2 log n ) O(n^2 \log n) O(n2logn)
六、算法流程
- 将每对
(
a
i
,
b
j
)
(a_i, b_j)
(ai,bj) 的和保存到数组
en12
中; - 将每对
(
c
k
,
d
l
)
(c_k, d_l)
(ck,dl) 的和保存到数组
en34
中; - 对
en34
排序; - 对于
en12
中的每个值x
,在en34
中用二分查找统计 − x -x −x 出现的次数,累加到答案中。
七、代码实现(带详细注释)
#include <bits/stdc++.h>
#define int long long
using namespace std;
// 该函数负责枚举两个指定列(x 列和 y 列)所有可能的两数之和,并存入 ender 向量中
// ender:用于存放结果的容器
// nums:存储 n 行 4 列矩阵的二维数组
// x, y:表示当前要组合的两列(1~4)
// n:矩阵的行数
void pin(vector<int>& ender, vector<vector<int>> nums, int x, int y, int n)
{
for(int i = 1; i <= n; i++) // 遍历第一个数所在的行
{
for(int j = 1; j <= n; j++) // 遍历第二个数所在的行
{
// 将第 i 行第 x 列 与 第 j 行第 y 列 的和计算出来
int count = nums[i][x] + nums[j][y];
ender.push_back(count); // 保存所有 a[i] + b[j] 或 c[i] + d[j]
}
}
}
signed main()
{
int n;
cin >> n; // 读取矩阵的行数
// 创建二维数组 nums,大小为 (n+1) 行、5 列(方便使用 1-based 下标)
vector<vector<int>> nums(n + 1, vector<int>(5, 0));
// 读入矩阵中的每行 4 个元素:a[i][1] ~ a[i][4]
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= 4; j++)
{
cin >> nums[i][j];
}
}
// en12 存放所有 a[i][1] + a[j][2] 的组合,即 A 列与 B 列的所有两数之和
// en34 存放所有 a[i][3] + a[j][4] 的组合,即 C 列与 D 列的所有两数之和
vector<int> en12;
vector<int> en34;
pin(en12, nums, 1, 2, n);
pin(en34, nums, 3, 4, n);
// 为了后续使用二分查找,先对 en34 排序
sort(en34.begin(), en34.end());
int ender = 0; // 用于记录符合条件(四数之和为 0)的四元组总数
// 遍历 en12 中的每一个两数之和 s,查找有多少个 -s 存在于 en34 中
for(int i = 0; i < en12.size(); i++)
{
// 利用二分查找,找到 en34 中值等于 -en12[i] 的个数:
// upper_bound 返回大于 -s 的第一个元素的迭代器位置
// lower_bound 返回第一个大于等于 -s 的位置
// 二者差即为等于 -s 的元素个数
ender += (upper_bound(en34.begin(), en34.end(), -en12[i])
- lower_bound(en34.begin(), en34.end(), -en12[i]));
}
// 输出符合 a[i][1] + a[j][2] + a[k][3] + a[l][4] == 0 的四元组个数
cout << ender;
return 0;
}
八、复杂度分析
步骤 | 复杂度 |
---|---|
枚举 en12、en34 各 n 2 n^2 n2 项 | O ( n 2 ) O(n^2) O(n2) |
对 en34 排序 | O ( n 2 log n ) O(n^2 \log n) O(n2logn) |
每个 en12 项二分查找 | O ( n 2 log n ) O(n^2 \log n) O(n2logn) |
总复杂度 | O ( n 2 log n ) O(n^2 \log n) O(n2logn) |
九、总结
- 本题是一个经典的高维枚举降维问题,等价于 4Sum II;
- 暴力四重循环不可行,应采用分组 + 排序 + 二分查找优化;
- 技巧核心在于:枚举 a + b a+b a+b,查找 − ( c + d ) -(c+d) −(c+d),或反过来均可;
- 本题使用 STL 提供的
lower_bound
与upper_bound
,简洁高效。
杂谈(折半枚举 +哈希查找)
注意:对于本题来讲,会爆空间,但是是一个比较好的思路
使用 哈希表优化“二分查找”部分,将时间复杂度可以进一步简化为:
枚举两两组合( O ( n 2 ) O(n^2) O(n2)) + 哈希查表( O ( 1 ) O(1) O(1)) = 总体 O ( n 2 ) O(n^2) O(n2) 级别,无排序,常数更小,速度更快。
一、核心思想(哈希优化 vs 二分)
在之前的做法中,我们是这样操作的:
- 枚举所有
A
[
i
]
+
B
[
j
]
A[i] + B[j]
A[i]+B[j],存到数组
en12
; - 枚举所有
C
[
k
]
+
D
[
l
]
C[k] + D[l]
C[k]+D[l],存到数组
en34
并排序; - 对于每个
x
x
x in
en12
,二分查找en34
中有多少个 − x -x −x。
现在我们换一种方式:
1.1哈希版本的做法:
- 第一阶段:枚举所有
A
[
i
]
+
B
[
j
]
A[i] + B[j]
A[i]+B[j],统计出现次数,存入哈希表
map<int, int>
; - 第二阶段:枚举所有 C [ i ] + D [ j ] C[i] + D[j] C[i]+D[j],直接查找哈希表中是否存在 − ( C [ i ] + D [ j ] ) -(C[i] + D[j]) −(C[i]+D[j]),若存在则加上其出现次数。
二、完整代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
signed main()
{
int n;
cin >> n; // 读入矩阵行数
// 创建一个 (n+1) × 5 的二维数组,1-based 下标,方便后续处理
vector<vector<int>> nums(n + 1, vector<int>(5, 0));
// 读入每一行的 4 个元素,存入 nums[i][1~4]
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= 4; j++)
{
cin >> nums[i][j];
}
}
// 哈希表,用于统计 nums[i][1] + nums[j][2] 的所有和及其出现次数
unordered_map<int, int> sums;
int ender = 0; // 记录最后结果:满足条件的四元组个数
// 枚举所有 (A[i], B[j]) 的组合,计算 a + b 的值并计数
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
int count = nums[i][1] + nums[j][2]; // 计算第一列和第二列对应元素之和
sums[count]++; // 记录这个和出现的次数
}
}
// 枚举所有 (C[i], D[j]) 的组合,查找是否存在 a + b = -(c + d)
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
int count = nums[i][3] + nums[j][4]; // 计算第三列和第四列对应元素之和
ender += sums[-count]; // 查找是否存在 a+b == - (c+d),并累加次数
}
}
// 输出满足四数之和为 0 的四元组个数
cout << ender;
return 0;
}
三、时间复杂度分析
步骤 | 时间复杂度 |
---|---|
枚举 C [ i ] + D [ j ] C[i] + D[j] C[i]+D[j] | O ( n 2 ) O(n^2) O(n2) |
枚举 A [ i ] + B [ j ] A[i] + B[j] A[i]+B[j] + 查表 | O ( n 2 ) O(n^2) O(n2) |
总计 | O ( n 2 ) O(n^2) O(n2) |
相比排序 + 二分的 O ( n 2 log n ) O(n^2 \log n) O(n2logn),哈希表方案常数更小,速度更快,但是对于大数据量会爆空间。
三、总结
方法 | 是否排序 | 是否二分 | 是否哈希 | 复杂度 | 优劣说明 |
---|---|---|---|---|---|
排序 + 二分 | 是 | 是 | 否 | O ( n 2 log n ) O(n^2 \log n) O(n2logn) | 稳定,适用于不支持哈希环境 |
哈希查表法 | 否 | 否 | 是 | O ( n 2 ) O(n^2) O(n2) | 更快,适用于小数据量环境 |