- 博客(493)
- 收藏
- 关注
原创 大模型系列——模型上下文协议 (MCP)
摘要:模型上下文协议(MCP)与AI聊天生态的未来 Anthropic提出的模型上下文协议(MCP)正成为连接AI模型与外部工具/知识的关键开放标准。随着AI聊天逐渐取代传统搜索引擎成为用户意图入口,MCP为组织提供了将业务功能整合到AI生态的可行方案。目前已有上千个MCP服务器实现各类功能集成,开发者社区活跃。虽然MCP仍处开发者预览阶段且存在复杂性,但它为企业在AI时代保持竞争力提供了早期实践机会。建议组织通过MCP原型开发来探索未来AI集成的挑战与机遇,而非等待更成熟的标准出现。
2025-07-24 21:58:30
143
原创 大模型系列——解放生产力:构建程序员的 AI 知识库
**摘要:**程序员可利用Obsidian构建AI知识库,结合终端插件与AI CLI工具如qwen-code,实现高效工作流。Obsidian的Markdown语法和插件生态使其成为理想的知识管理工具,支持终端集成、自动化处理和版本控制。通过分屏布局,用户可同时管理文件、调用AI辅助和编辑笔记。其他推荐的AI CLI工具包括gemini-cli、aichat和auto-coder,各具特色。这套方法强调纯粹、开放和高效,助力程序员打造个性化的思考与创作环境。
2025-07-24 21:57:26
8
原创 # 大模型系列——Dify本地化部署实战
摘要: 本文介绍Dify本地化部署流程,需满足CPU≥2核、RAM≥4GiB的最低配置。部署依赖PostgreSQL、Redis、向量数据库(Weaviate/Qdrant/Milvus)及Dify的API、Worker、Web服务,通过Docker Compose一键启动。步骤包括克隆代码库、配置环境变量、启动容器(docker compose up -d),并验证服务状态。支持自定义.env配置,更新时需同步环境变量。部署成功后,访问localhost/install初始化管理员账户,通过localho
2025-07-17 08:12:58
258
原创 大模型系列——Dify中的MCP相关插件及FastMCP服务实现原理
本文介绍了Dify平台中的MCP相关插件及FastMCP服务实现原理,重点分析了Dify v1.5.0版本的6类核心MCP插件。主要内容包括:1)4种MCP插件类型(扩展插件、工具插件、Agent策略插件和垂直领域应用);2)具体插件的功能说明,如将Dify应用发布为MCP服务、通过HTTP/SSE调用工具、支持Function Calling和ReAct策略等;3)各插件的配置方法示意图,包括Agent策略选择、工具列表配置、端点设置等。文章还提供了相关插件的GitHub仓库和Dify市场链接,为开发者实
2025-07-17 08:12:27
43
原创 大模型系列——Dify:知识库与外部知识库
摘要 Dify知识库系统通过整合静态预训练数据和动态外部信息,提升大模型回答的准确性和时效性。系统支持创建知识库并上传多种格式文档,提供高质量和经济两种索引模式,其中高质量模式支持向量检索、全文检索和混合检索。知识库管理包括元数据分类(内置和自定义)、文档分段和检索设置,同时支持连接外部知识库以扩展信息来源。系统还提供API接口,允许开发者自定义检索参数和元数据筛选条件,实现更灵活的信息检索机制。
2025-07-16 13:19:46
158
原创 大模型系列——AI大模型落地最后一公里:RAG
摘要:AI大模型落地的关键挑战在于如何有效整合私有知识库,而检索增强生成(RAG)技术成为解决这一问题的核心方案。RAG通过"先检索后生成"的机制,将大语言模型的通用能力与企业特定知识相结合,显著提升回答的准确性和专业性。该系统由知识库、检索器和语言模型三部分组成,能有效减少模型幻觉,确保回答基于最新、非公开数据。构建RAG系统需根据实际需求定制,涉及文档处理、索引建立和检索优化等环节,是企业专属智能体实现价值的关键技术。
2025-07-16 13:18:33
23
原创 大模型系列——ollama 自定义模型
Ollama支持自定义模型操作,用户可通过创建Modelfile文件导入GGUF格式模型或修改现有模型参数。具体步骤包括:1)从GGUF文件导入模型并命名;2)修改基础模型参数(如温度值)和系统提示语;3)创建并运行定制模型。示例展示了为摩托车App设计的观点提取机器人模型,通过对比原始Llama3模型,验证了定制模型在特定任务中的优化效果。该功能使开发者能快速构建满足特定需求的AI应用。
2025-07-10 09:42:43
33
原创 大模型系列——Ollama+MaxKB 部署本地知识库
本文介绍了使用Ollama+MaxKB快速部署本地知识库问答系统的方案。通过Docker安装MaxKB后,配置本地Ollama模型(如Qwen2),建立知识库并创建应用,30分钟内即可上线。该系统支持多种文件格式上传,可嵌入第三方业务系统。虽然低配电脑响应较慢,但该方案实现简单,采用RAG流程,适合快速实践大模型应用。文章详细说明了安装步骤、模型配置要点及功能演示,指出企业级应用需更高性能服务器支持。
2025-07-10 09:41:48
110
原创 大模型系列——Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI是一个开源免费AI内容生成平台,提供文本、图像、音频等多种内容生成API。平台支持多种模型(如Flux/Turbo),无需注册即可通过URL直接调用API,开发者可使用Python SDK快速集成。主要功能包括:文本生成图像、文生音频、音频转文字等,并提供OpenAI兼容接口。用户可通过Web端或API调用生成内容,参数可自定义如尺寸、随机种子等。该平台降低了AI内容创作门槛,适合开发者、创作者快速搭建内容生产流程。
2025-07-09 08:49:58
405
原创 大模型系列——Prompt:让你的工作价值被看见,述职时从6分表达到10分价值的完整指南
摘要:本文提供了一套完整的工作价值提炼系统Prompt,帮助职场人士在述职或晋升时更好地展示实际工作价值。系统通过七步流程(包括多维价值解析、STAR+I重构、价值量化等)将隐性工作成果转化为可衡量的业务价值表达,并针对不同汇报场景提供适配建议。文中包含实际效果示例和价值提炼模板,强调数据量化、战略关联和创新视角的重要性。该Prompt适用于各类行业,旨在解决"工作10分表达6分"的常见问题,让真实工作价值得到应有的认可。(149字)
2025-07-09 08:48:53
30
原创 大模型系列——RAG-Anything:开启多模态 RAG 的新纪元,让文档“活”起来!
RAG-Anything是一款开创性的多模态文档处理系统,突破了传统文本RAG的局限。这个开源项目能智能解析PDF、Word、Excel等各类文档中的文字、图像、表格和公式内容,构建跨模态的知识图谱。通过端到端的处理流程,它实现了精准的跨模态检索功能,可以根据文字、图片或表格提问,智能关联并提取最匹配的内容片段。系统提供两种灵活模式:智能解析模式自动挖掘文档结构,直接插入模式支持特定内容注入。作为多模态RAG技术的重要进展,RAG-Anything为科研、企业文档管理和智能知识库建设提供了全新解决方案,开启
2025-07-08 21:13:27
425
原创 大模型系列——一文看懂“提示词” vs “提示词工程” vs “上下文工程”
本文区分了AI领域的三个关键概念:提示词(Prompt)、提示词工程(Prompt Engineering)和上下文工程(Context Engineering)。提示词是直接输入给AI模型的指令文本;提示词工程则是系统化设计、测试和优化提示词的过程;而上下文工程是为AI构建动态上下文,提供恰当信息和工具的科学与艺术。文章通过翻译案例展示了提示词工程的迭代过程,并说明上下文工程在AI Agent中的核心作用——动态收集和组织必要信息。最后强调普通人只需掌握提示词编写,开发AI应用才需深入提示词工程,构建智能
2025-07-08 21:11:28
173
原创 大模型系列——TRAE+Milvus MCP 自然语言就能搞定向量数据库
Milvus是由Zilliz开发的全球首款开源向量数据库产品,能够处理数百万乃至数十亿级的向量数据,在Github获得3万+star数量。基于开源Milvus,Zilliz还构建了商业化向量数据库产品Zilliz Cloud,这是一款全托管的向量数据库服务,通过采用云原生设计理念,在易用性、成本效益和安全性上实现了全面提升。
2025-07-07 17:41:01
43
原创 大模型系列—— 超强的AI 视频生成模型!完全免费开源,生成质量极高!
腾讯开源了一款强大的AI视频生成模型HunyuanVideo,提供完整的PyTorch模型、预训练权重和推理代码。该模型支持多种分辨率,720p版本需60GB显存,建议使用80GB显存的GPU。安装过程包括环境配置、依赖项安装和模型下载(约26G)。模型采用MLLM和CLIP作为文本编码器,支持自定义提示词生成高质量视频。用户可通过命令行工具进行推理,并调整参数控制视频大小、长度和生成质量。该开源项目为开发者提供免费的高质量视频生成方案,技术文档和体验入口详见GitHub仓库。
2025-07-07 17:39:32
135
原创 大模型系列——提示词工程:从原理、实践到未来的一部系统性综述
摘要 提示词工程(Prompt Engineering)已从偶然发现发展为系统化的人机交互范式,成为释放大语言模型(LLM)潜能的关键技术。本文系统梳理了提示词工程的发展历程,从GPT-3时代"上下文学习"的涌现到当前工程化应用的演进过程。重点分析了思维链(CoT)、自我反思等高级提示框架的原理与价值,探讨了检索增强生成(RAG)、自主智能体等系统化实现路径。通过科学发现、法律科技等领域的应用案例,展现了提示词工程如何解决模型幻觉问题并提升任务性能。文章还前瞻性地探讨了提示词编程、自动化
2025-06-24 07:53:30
53
原创 大模型系列——从“数据可视化”到“数据可视听化”
摘要 本文探讨了AI时代下数据可视化从专业领域向大众应用的转变。传统数据可视化主要依赖编程语言和商业BI工具,服务于企业场景。AI技术降低了专业门槛,使数据可视化扩展到教育、职场和自媒体等C端领域。文章分析了传统数据可视化工具(如Excel、Python、Tableau)和图表类型,并介绍了思维导图、视觉笔记等C端应用。重点阐述了AI如何增强数据可视化能力:DeepSeek等工具简化图表生成,Napkin AI等产品实现文本到视觉内容的转换,NotebookLM提升知识获取效率。AI推动"数据可视
2025-06-24 07:50:50
27
原创 大模型系列——GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案
在人工智能领域,基于私有文档的问答系统一直是研究和应用的热点。传统的检索增强生成(RAG)技术虽然已经取得了显著的进步,但由于其单纯依赖向量相似度,往往难以捕捉实体之间的重要上下文关系。为了突破这一局限,GraphRAG应运而生,它将向量搜索与知识图谱相结合,不仅能够理解语义相似性,还能深入把握概念之间的关系,为文档检索与生成带来了革命性的变革。
2025-06-20 07:59:50
507
原创 大模型系列—— 把无聊工作交给Agent,10倍效率归还人类
**摘要:**北大康奈尔校友、前阿里达摩院产品总监杨劲松创立AI Agent公司,专注解决大模型落地"最后一公里"问题。他认为大模型是"大脑",Agent则是赋予执行力的"手脚",在电力、金融等行业已实现风险监测、信贷审核等场景应用。创业公司选择垂直领域深耕,通过实效差异化竞争。未来展望中,Agent将使人人都能管理"数字员工",实现十倍效率提升。中小企业可先试用现成工具解决重复性工作,逐步构建智能工作流。(149字)
2025-06-20 07:57:22
147
原创 大模型系列——官方案例带你了解MCP 的生命周期
摘要:MCP协议在大模型外部知识获取中的实践 本文介绍了MCP(Model Context Protocol)在大模型应用中的实现方案,解决LLM获取外部知识和工具调用的核心挑战。文章通过官方SDK演示了MCP的完整生命周期:从MCP Server的工具注册(天气查询和活动推荐),到OpenRouter大模型调用,再到MCP Client通过SSE协议实现工具调用的交互流程。MCP协议强调统一标准和跨模型兼容性,其架构将Host(应用系统)与Client逻辑整合,采用装饰器简化工具注册。示例代码展示了硬编码
2025-06-18 08:01:46
122
原创 大模型系列——你还不懂MCP嘛,一文带你彻底搞懂
MCP(Model Context Protocol)是由Anthropic公司推出的标准化AI工具协议,旨在简化大模型与外部工具的交互流程。该协议通过自动化数据传输替代传统手动操作,如截图、复制粘贴等,提升工作效率。MCP服务作为桥梁连接AI与各类工具,每个服务专注于特定任务(如浏览器操作、文件处理等),采用JSON格式进行数据交换。与Function Calling类似,MCP的独特优势在于统一了各大模型的调用标准,兼容性强(包括Claude、DeepSeek等)。目前支持MCP的客户端包括Cline、
2025-06-18 07:57:32
468
原创 大模型系列——如何给 GitHub Copilot “洗脑”,让 AI 精准遵循指令产出高质量代码
这篇文章探讨了如何通过系统指令"洗脑"GitHub Copilot,使其产出高质量代码。作者发现AI工具生成的代码虽然可用,但常存在质量缺陷。为此开发了一套Markdown格式的指令系统,包含代码规范、工作流程和思考方式等指导原则。这套方法通过强制AI角色扮演、慢思考和自我批判等技巧,有效提升了代码质量。用户只需在VS Code中配置相关文件路径即可应用该指令系统。作者认为这种AI引导方式类似于培养新人程序员,不仅能优化AI输出,也有助于开发者反思软件工程的最佳实践。
2025-06-17 23:00:58
160
原创 大模型系列——专家混合模型 (MoE)快速指南
专家混合模型(MoE)在高效大模型中的应用与发展 专家混合(MoE)已成为提升大语言模型效率的关键架构。本文介绍了MoE的基本原理,如Mixtral-8×7B模型通过8个专家和路由机制实现了47B参数的强大性能,同时仅激活13B参数。研究显示,增加专家数量和粒度能提升模型质量,但需平衡路由成本。最新进展如"百万专家混合"提出优化路由方法,使模型规模可扩展至百万专家级别。此外,MoE还被应用于终身学习场景,通过冻结主干并训练新专家来适应新数据,避免灾难性遗忘。这些研究表明MoE在提升模型性
2025-06-16 07:52:28
104
原创 大模型系列——LangChain开发RAG增强检索生成
本文介绍了基于LangChain开发RAG(检索增强生成)系统的完整流程。系统结合PGVector向量数据库和LangGraph状态管理,实现文档检索与语言模型协同工作。主要内容包括:初始化GPT-4模型,加载网页文档并进行文本分割;使用OpenAI嵌入模型向量化文档;构建由分析、检索、生成三阶段组成的LangGraph流程;通过PostgreSQL保存对话状态。该系统能够根据用户提问自动检索相关文档内容,生成准确回答,适用于问答、摘要等多种场景,有效提升了生成结果的相关性和准确性。
2025-06-16 07:51:06
203
原创 大模型系列——用AI简化用户画像分析
AI助力用户体验研究:高效创建用户画像与旅程图 摘要: 本文探讨了生成式AI工具在用户体验研究中的应用,重点介绍如何利用AI辅助创建用户画像和旅程图。作者通过20年UX研究经验,开发了一套混合提示方法,能够更高效地将研究数据转化为生动的用户画像和详细的旅程图。文章详细说明了从数据收集、角色设定到AI提示设计的完整流程,强调AI作为辅助工具的角色,仍需研究人员把控数据准确性和消除偏见。同时提供了具体操作示例,包括上传文档格式、保护数据隐私的注意事项,以及优化AI输出结果的技巧。这种方法特别适合缺乏创意写作能力
2025-06-15 09:17:49
168
原创 大模型系列——使用 Redis 和 Spring AI 创建 RAG(检索增强生成)应用
本文介绍了如何使用Redis和Spring AI构建检索增强生成(RAG)应用。RAG技术通过结合向量数据库和大型语言模型(LLM),为查询提供上下文信息,避免LLM幻觉问题。主要内容包括: RAG架构概述:通过ETL流程将知识库文档分割、矢量化并存储到Redis向量数据库,增强LLM提示的准确性。 实现步骤: 准备OpenAI API密钥和Redis Cloud账户 配置Spring AI框架的Maven依赖 使用PagePdfDocumentReader读取PDF文档 通过TokenTextSplitt
2025-06-14 23:04:43
188
原创 大模型系列——使用 Embedding 模型和向量数据库的 Spring AI RAG
本文介绍了如何使用Spring AI实现检索增强生成(RAG)技术,主要包括: 嵌入式模型的基本概念及其在自然语言处理中的作用 使用DocumentReader加载数据的方法 在VectorStore中存储Embedding的技术实现 RAG(检索增强生成)的完整工作流程 文章通过示例代码展示了如何使用Spring AI将文本转换为Embedding向量,并存储在向量数据库中。重点说明了如何利用自然语言查询向量数据库获取相关数据,再通过AI模型生成响应。这种方法解决了大型语言模型缺乏特定领域知识的局限,无需
2025-06-14 23:03:36
48
原创 大模型系列—— LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
《LLM大模型本地部署实战指南》摘要 本文介绍了四种LLM大模型部署方案,重点详述了Ollama的安装部署流程。Ollama作为开源框架,专为简化本地LLM部署而设计,具有轻量级、可扩展、API支持和预建模型库等特点。 主要包含: 一键安装方法及SSL证书问题解决 手动安装的完整步骤(创建用户、配置服务) Linux内网离线安装方案 模型存储路径修改方法 模型下载运行操作指南(pull/run/list命令) GPU资源监控方式 同时简要提及OpenLLM、LocalAI和Dify等其他部署方案。全文提供详
2025-06-13 07:46:54
147
原创 大模型系列——RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM
本文对比了几款主流LLM框架:MaxKB、Dify、FastGPT、RagFlow和Anything-LLM。MaxKB是企业级知识库问答系统,支持文档管理和智能问答;Dify是LLM应用开发平台,提供工作流编排、Agent框架和RAG引擎;FastGPT专注知识库训练和工作流自动化;RagFlow是基于深度文档理解的开源RAG引擎。各框架在技术栈、功能侧重点和适用场景上有所不同,企业可根据需求选择。MaxKB适合企业知识管理,Dify适合复杂应用开发,FastGPT和RagFlow侧重知识库与检索增强。
2025-06-13 07:43:21
60
原创 大模型系列——Dify入门 知识库分析
Dify知识库功能入门指南:Dify的知识库提供了一个便捷的管理平台,可用于存储业务问答、操作逻辑和公司资料等内容。操作简单,支持多格式文件上传,通过向量化模型将文本转化为数字以便计算处理。知识库维护灵活,可批量添加内容并调整关键词匹配。内置检索测试功能帮助优化内容准确性,适用于Agent、工作流等多种场景。本质上,知识库是为大模型配备的"记事本",让模型能参考预设内容更精准地回答问题。
2025-06-12 07:52:31
47
原创 大模型系列——dify打造数据可视化图表
摘要 文章介绍了如何利用蚂蚁集团AntV团队开源的mcp-server-chart工具实现数据可视化,并结合Dify工作流从数据库生成图表。该工具支持15+常用图表类型,提供图片链接返回结果。通过Docker快速部署后,演示了Cherry Studio调用生成词云图的示例。重点展示了Dify+MySQL+mcp-server-chart的工作流方案:用户自然语言提问→需求提炼→SQL转换→查询数据→生成图表。文中包含完整的MySQL表创建、数据插入示例,以及Dify工作流各节点配置细节,特别强调需使用Dee
2025-06-12 07:46:57
196
原创 大模型系列——Dify通过插件查询MySQL
摘要:本文介绍了如何通过Dify平台实现AI直接查询MySQL数据库的功能,无需传统数据库客户端或编程语言。关键点包括提供表结构信息给AI模型和使用Dify的数据库查询工具。具体实现步骤包括安装插件、创建Chatflow、配置表结构转换节点和Agent节点、设置数据库连接和提示词等。最后展示了查询结果,并提到还可以通过MCP或HTTP请求等其他方式实现数据库查询。该方案简化了数据库查询流程,提升了效率。
2025-06-11 07:53:41
763
2
原创 大模型系列——python 的现代包管理器UV
本文介绍了Python现代包管理器uv的基本使用方法。主要内容包括: 使用uv init初始化项目,创建规范的目录结构(src-layout或flat-layout),重点说明了--package选项用于创建可分发应用。 uv的功能:不仅是包管理器,还作为Python构建系统前端和环境管理器,可通过uv run运行脚本或命令。 项目开发流程:包括创建虚拟环境、管理依赖、添加命令入口点、以及如何安装到用户全局环境(uv tool install)。 打包分发注意事项:强调pyproject.toml配置和__
2025-06-11 07:50:10
28
原创 大模型系列——大模型核心技术解析:参数量、量化、Zero版本与模型蒸馏
本文深入解析大模型四大核心技术:参数量、量化、Zero版本与模型蒸馏。参数量决定模型规模(如1.5b至671b),与性能呈幂律关系但面临显存与计算挑战。量化技术(如W4A16)通过降低精度(FP32→INT8)显著提升效率,需在精度损失与性能间权衡。Zero版本保留原始训练目标,适合创意生成但可能产生"幻觉"。模型蒸馏通过知识迁移训练小模型,实现85%以上性能保留。四种技术各具优势,需根据研发阶段、硬件限制和应用场景灵活组合,推动高效AI系统构建。未来MoE架构等技术将进一步优化这一平衡
2025-06-10 07:57:33
546
原创 大模型系列——通过 MCP 服务对接 PostgreSQL 取数
本文详细介绍了如何通过MCP服务对接PostgreSQL数据库,实现AI智能查询功能。操作步骤包括:1)使用1Panel v2.0搭建Linux运维面板;2)部署MaxKB企业AI助手;3)从mcp.so获取PostgreSQL配置;4)在1Panel中创建MCP服务并配置数据库连接;5)在MaxKB工作流中集成MCP服务组件。最终实现AI自动生成SQL、查询数据库并整理结果返回用户的完整流程。整个过程涉及服务器环境配置、服务部署和系统集成,为构建智能数据查询系统提供了完整解决方案。
2025-06-10 07:56:00
173
原创 大模型系列——Trae创建一个MCP Server 并调用
摘要:Trae作为字节推出的AI原生IDE,最新版本支持智能体系统、MCP工具链和智能上下文三大功能,成为国内首个支持MCP协议的AI开发环境。教程演示如何利用Trae创建MCP Server:通过Coze工作流获取头条新闻素材,使用AI Coding快速编写MCP服务代码,最终实现Agent自动调用MCP生成日报网页。重点展示了非流式调用方案,需通过三个接口异步获取数据,Trae的Builder模式能自动生成符合规范的代码结构。
2025-06-09 21:37:49
47
原创 大模型系列——使用 StarRocks 作为向量数据库
本文介绍了如何将高性能分析数据库StarRocks作为向量数据库使用。主要内容包括:安装必要库文件,加载并拆分Markdown文档为标记,配置StarRocks实例参数(端口、主机、用户等),将文档嵌入向量数据库,以及构建问答系统进行查询测试。StarRocks凭借其快速向量化执行引擎,在OLAP场景下表现出色,能够高效处理文档检索任务。通过示例展示了从文档加载到实际查询的完整流程,最终成功实现了基于StarRocks的问答系统。
2025-06-09 21:36:49
128
原创 大模型系列——在本地计算机上利用AnythingLLM构建DeepSeek大模型本地知识库
本地部署DeepSeek大模型知识库指南 本文详细介绍了在Windows系统上使用Ollama、DeepSeek和AnythingLLM搭建本地知识库的全流程。首先通过Ollama官网或百度网盘下载安装Ollama,并验证安装成功;接着安装1.5B参数的DeepSeek模型;最后安装AnythingLLM桌面应用,配置Ollama作为LLM提供商,创建知识库工作区并上传文档。整个过程提供了完整的图文指导,包括安装步骤截图、命令行验证方法和配置界面说明,帮助用户快速构建本地化的大模型知识库系统。
2025-06-09 08:12:07
24
原创 大模型系列——在本地计算机上利用AnythingLLM构建DeepSeek大模型本地知识库
本文介绍了如何在本地计算机上构建DeepSeek大模型知识库。首先下载安装Ollama(1.9MB)和DeepSeek(1.5B)模型,然后配置AnythingLLM作为交互界面。安装过程详细展示了每个步骤的操作方法,包括验证安装、模型测试等。最后演示了如何使用AnythingLLM上传文档与模型交互。所有软件均提供官网和百度网盘(提取码:ziyu)两种下载方式。该方案为本地运行大语言模型提供了完整解决方案。
2025-06-08 18:01:32
20
原创 大模型系列——动动手指几分钟,给微信公众号接入 AI
就这样,有兴趣的可以尝试接入到自己的公众号中,还是很快的。也可以直接关注我的公众号玩一玩试试效果。
2025-06-08 17:59:17
120
空空如也
这个收益在csdn 算什么水平
2025-07-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人