‘close’: ‘Close’, ‘vol’: ‘Volume’},
inplace=True) # 重定义列名,方便统一规范操作。
df[‘Date’] = pd.to_datetime(df[‘Date’]) # 转换日期列的格式,便于作图
df.set_index([‘Date’], inplace=True) # 将日期列作为行索引
df = df.sort_index() # 倒序,因为Tushare的数据是最近的交易日数据显示在DataFrame上方,倒序后方能保证作图时X轴从左到右时间序列递增。
第二步,我们先使用一下mpf.make_marketcolors()函数,来设定一下K线的颜色方面的信息。一会儿要把这个设定的结果作为实参传给mpf.make_mpf_style()来设定自定义的风格样式。
mc = mpf.make_marketcolors(
up=“red”, # 上涨K线的颜色
down=“green”, # 下跌K线的颜色
edge=“black”, # 蜡烛图箱体的颜色
volume=“blue”, # 成交量柱子的颜色
wick=“black” # 蜡烛图影线的颜色
)
还有一个叫alpha的参数,设置的是candlestick face,取值在0.1-1之间。这个设置的是K线蜡烛颜色的深浅,比如把当alpha设置为0.6的时候红色蜡烛就变成了接近橘黄色。绿色就变成了翠绿色。这个根据自己的感官来尝试选择就好啦。
mc设置好后,接下来我们要将其传给mpf.make_mpf_style()的marketcolors参数,来设定自定义的风格样式了。
第三步,我们开始设定自定义的风格样式了。
使用mpf.make_mpf_style函数,其参数有:
-
base_mpf_style:继承内置的风格,不想继承的话就不需要设置。这里我们不设置,纯靠自定义。
-
mavcolors 设置均线样式,必须使用列表传参
-
facecolor 设置前景色(坐标系颜色)
-
edgecolor 设置框线样式
-
figcolor 设置图像外周边填充色
-
gridcolor 设置网格线颜色
-
gridaxis 设置网格线方向,both双向 'horizontal’水平, 'vertical’垂直
-
gridstyle 设置网格线线型 例如
‘-’/‘solid’, ‘–’/‘dashed’, ‘-.’/‘dashdot’, ‘:’/‘dotted’, None/’ ‘/’’
-
y_on_right 设置y轴位置是否在右
-
rc 使用rcParams的dict设置样式,如果内容与上面的自定义设置相同,那么自定义设置覆盖rcParams设置
这个参数常用的写法为:
rc={‘font.family’: ‘SimHei’, ‘axes.unicode_minus’: ‘False’}
是用来解决 mplfinance库生成的图象 中文乱码 和不显示负数的问题的。
- marketcolors 就是上一步我们定义的那个K线的属性,把它传入就OK了。
s = mpf.make_mpf_style(
gridaxis=‘both’,
gridstyle=‘-.’,
y_on_right=True,
marketcolors=mc,
edgecolor=‘b’,
figcolor=‘r’,
facecolor=‘y’,
gridcolor=‘c’)
第四步,开始使用mpf.plot()绘图了,传入上边设定好的风格s
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!