Pycharm搭建CUDA,Pytorch教程(匹配版本,程序员面试指南

本文详细介绍了如何在PyCharm中搭建CUDA和PyTorch环境,包括通过官网和国内镜像安装PyTorch,以及验证CUDA是否可用。适合Python开发者和面试者,提供不同CUDA版本与PyTorch的对应表,并分享了个人的程序员成长经历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

| 11.1 | 1.8.0 |
| 11.3 | 1.12.1,1.12.0,1.11.0,1.10.1,1.10.0,1.9.1,1.9.0,1.8.1,1.8.0 |
| 11.6 | 1.13.1,1.13.0,1.12.1,1.12.0 ,1.13.1 |
| 11.7 | 1.13.1,1.13.0,1.13.1 ,2.0.0,2.0.1 |
| 11.8 | 1.13.1,1.13.0 ,2.0.0,2.0.1,2.1.0 |
| 12.1 | 2.1.0,2.0.1,2.0.0 |

版本大致按照这个表格对应,最新的cuda12.3版本亲测可以兼容pytorch2.0.0,其余未知,参考官网Previous PyTorch Versions | PyTorch

pytorch与python对应关系

python与pytorch,torchvision版本对应表

torch torchvision python
<=1.0.1 0.2.2 ==2.7, >=3.5, <=3.7
1.1.0 0.3.0 ==2.7, >=3.5, <=3.7
1.2.0 0.4.0 ==2.7, >=3.5, <=3.7
1.3.0 0.4.1 ==2.7, >=3.5, <=3.7
1.3.1 0.4.2 ==2.7, >=3.5, <=3.7
1.4.0 0.5.0 ==2.7, >=3.5, <=3.7
1.5.0 0.6.0 ==2.7, >=3.5, <=3.8
1.5.1 0.6.1 ==2.7, >=3.5, <=3.8
1.6.0 0.7.0 >=3.6, <=3.8
1.7.0 0.8.0 >=3.6, <=3.8
1
### 配置 PyCharm 使用 CUDA 进行 PyTorch 开发 #### 安装必要的软件包 为了确保能够在 PyCharm 中使用 CUDA 执行 PyTorch 的 GPU 加速功能,需要先创建并激活一个合适的 Python 虚拟环境。通过 conda 创建名为 `pytorch_gpu` 的虚拟环境,并指定 Python 版本为 3.8: ```bash conda create -n pytorch_gpu python=3.8 ``` 接着安装特定版本PyTorch 及其依赖项以匹配所使用的 CUDA 版本 (这里假设为 CUDA 10.1),这可以通过 pip 来完成: ```bash pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ``` 以上命令会下载适用于 CUDA 10.1 的 PyTorch 库及其配套工具[^1][^2]。 #### 设置 PyCharm 解释器 启动 PyCharm 后,在项目设置里找到 "Project Interpreter" 并点击齿轮图标旁边的加号来添加新的解释器。选择 “Conda Environment”,再选中之前建立好的 `pytorch_gpu` 环境作为项目的默认解释器。 #### 测试 CUDA 是否可用 编写一段简单的测试代码验证是否成功启用了 GPU 支持: ```python import torch if __name__ == "__main__": print(f"CUDA Available: {torch.cuda.is_available()}") device = 'cuda' if torch.cuda.is_available() else 'cpu' tensor_example = torch.tensor([1., 2., 3.], device=device) print(tensor_example) ``` 这段脚本将会打印出当前环境中是否有可用的 CUDA 设备以及尝试在一个张量上应用该设备[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值