- 让所有的数据仓库参与者了解数据仓库的设计
如何编写总线矩阵?
首先,总线矩阵不是代码,也不是纯文档性质。在构建总线矩阵对过程中,也需要完成许多代码开发前期的准备工作。
首先完成横向,即 数据域划分,业务过程的确立。数据域是一种对数据的抽象,通过将联系较为紧密的数据划分在同一数据主题中,方便寻找和使用数据。
比如,制造业中,我们可以将数仓划分为:生产、财务、人力、供应链、交付等数据域,每个域下包含不同的业务过程。如生产域下包括生产计划、实际生产、设备停机等业务。
通常是先确定业务过程有哪些,再按照某个规则将相关的业务划分为同一数据域中,常用的规则有:按业务相关性、按需求方、按应用划分等。也可以将数据域划分为多级主题,比如先按照部门划分一级主题,再按业务划分二级主题。
**数据域的划分没有对错,根据实际情况进行划分,让数据归纳更清晰,更好找易用就是好的数据域划分。**划分数据域时,可参考这些规则:数量不能太多,建议不超过10个;不同主题间无重叠业务过程;具有一定前瞻性,既能涵盖当前所有的业务需求,又能在新业务进入时无影响地被包含进已有的数据域中或扩展新的数据域。
其次完成纵向列,即公共一致性维度的划分以及度量值的确定。**维度是我们看世界的角度,度量则是形容指标的水平,他们都是指标的重要组成。**比如有个指标:“四月交付2000辆车”,“四月”和“车”是维度,“2000”是度量值,“辆”则是度量单位,维度和度量组合在一起形成月度指标。如果没有维度,“交付2000辆”则啥也代表不了。
维度的划分具有行业共同性,比如电商行业通常涉及这些维度:买家、卖家、订单、广告、货运、支付等,制造业中:设备、产线、项目、物料、车型等,还有一些跨行业通用的维度,如城市、日期等。维度的一致性是数据一致性的重中之重,总线矩阵是一致性维度建设的重要文件。从讨论总线矩阵的那刻开始,数仓数据一致性问题就解决了一半。
总线矩阵中的度量通常是原子指标,指业务过程中最基本的原子指标。比如生成计划业务过程中,度量