从聊天到代码,国产LLM一周大爆发!它们凭什么霸占Hugging Face热榜?

这一周是国产开源LLM集中大爆发的一周:GLM-4.5、Qwen3的5连发、Step3等等,接连发布,PaperAgent专题梳理盘点:

具备强大的视觉感知和复杂推理能力

一、GLM-4.5

GLM-4.5发布,这是新一代开源SOTA模型,专为智能体应用打造,采用混合专家架构,总参数量3550亿,激活参数320亿,具备思考和非思考两种模式,综合能力在推理、代码、Agentic智能体领域达到开源最佳水平,

图片

API调用价格低至输入0.8元/百万tokens、输出2元/百万tokens,高速版生成速度可达100tokens/秒,已在Hugging Face和ModelScope开源,支持全栈开发和工具调用,兼容主流代码智能体框架。

图片

    https://hf-mirror.com/zai-org

    二、Qwen3的5连发

    • 7.22   Qwen3模型升级为Qwen3-235B-A22B-Instruct-2507版本,显著提升了通用能力、多语言知识覆盖、用户偏好契合能力及长文本理解能力,并在魔搭社区和HuggingFace开源更新。

    • 7.23 Qwen3-Coder发布,这是480B参数激活35B参数的MoE代码模型,支持256K上下文扩展至1M,具备卓越的代码和Agent能力,在开源模型中表现优异,同时推出Qwen Code命令行工具,可与Claude Code、Cline等结合使用,支持通过API调用,未来还将探索更多尺寸和自改进能力。

      图片

    • 7.25  Qwen3-235B-A22B-Thinking-2507推理模型正式推出,其在编程、数学等核心能力及知识、创意写作、人类偏好对齐、多语言能力等通用能力上实现飞跃,支持256K长文本理解,已在魔搭社区、Hugging Face开源并采用Apache2.0协议,可免费商用。

    • 7.30  Qwen3-30B-A3B模型更新为Qwen3-30B-A3B-Instruct-2507和Qwen3-30B-A3B-Thinking-2507,前者非思考模式下性能媲美顶尖闭源模型,通用能力、多语言知识覆盖、用户偏好对齐及长文本理解能力大幅提升;后者推理能力显著增强,数学、代码、知识水平、通用能力均超越前代,支持256K原生上下文(可扩展至1M),已在魔搭社区和Hugging Face开源。

    • 8.1  Qwen3-Coder-Flash(Qwen3-Coder-30B-A3B-Instruct)发布,这是“甜品级”编程模型,拥有超强Agent能力,支持256K原生上下文(可扩展至1M),适配多平台,已在魔搭社区和Hugging Face开源,可自由部署。

      https://hf-mirror.com/Qwen/models

      三、阶跃星辰Step3

      阶跃星辰Step 3正式开源,这是一个总参数量321B、激活参数量38B的多模态推理模型,采用MoE架构,,通过MFA和AFD优化显著提升推理效率,支持跨硬件部署,已在Github、Hugging Face和魔搭ModelScope开源,API上线开放平台,限时折扣中。

        https://hf-mirror.com/stepfun-ai/step3

        四、混元3D大模型

        腾讯发布混元3D世界模型1.0(HunyuanWorld-1),这是首个支持物理仿真的开源3D世界生成系统,可依据文本或图像输入生成沉浸式、可交互的3D场景,具备360°沉浸体验、工业级兼容性和原子级交互三大优势,支持“文生世界”和“图生世界”两种生成方式,应用于VR、游戏开发、物体编辑和物理仿真等领域。

        https://hf-mirror.com/tencent/HunyuanWorld-1https://3d-models.hunyuan.tencent.com/world/体验地址:https://3d.hunyuan.tencent.com/sceneTo3D

        如何学习AI大模型?

        我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

        我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

        这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

        在这里插入图片描述

        第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

        第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

        第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

        第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

        第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

        第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

        第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

        在这里插入图片描述

        👉学会后的收获:👈

        • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

        • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

        • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

        • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

        在这里插入图片描述

        1.AI大模型学习路线图
        2.100套AI大模型商业化落地方案
        3.100集大模型视频教程
        4.200本大模型PDF书籍
        5.LLM面试题合集
        6.AI产品经理资源合集

        👉获取方式:
        😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

        在这里插入图片描述

         

        ### Hugging Face Open LLM Leaderboard 概述 Hugging Face 的 Open LLM Leaderboard 是一个广泛使用的平台,用于展示和比较开源大型语言模型(LLM)的性能[^2]。该榜单涵盖了多种模型,并根据不同的任务类型对模型进行排名,例如文本生成、代码生成、翻译等。此外,它还提供了丰富的模型信息,包括模型大小、训练数据来源、推理速度等关键指标[^1]。 以下是关于 Hugging Face Open LLM Leaderboard 的详细内容: ### 榜单特点 Hugging Face 的 Open LLM Leaderboard 不仅提供模型的性能排名,还允许用户通过交互式界面探索模型的具体表现。以下是一些关键特点: - **多任务评估**:榜单涵盖多个任务类别,如自然语言理解、生成任务、对话系统等[^3]。 - **透明性**:每个模型的评测结果都基于公开可用的数据集和评测标准[^2]。 - **社区驱动**:用户可以提交自己的模型或改进现有模型,从而促进社区协作和发展[^1]。 ### 如何访问 Hugging Face Open LLM Leaderboard 用户可以通过以下链接访问 Hugging Face 的 Open LLM Leaderboard 页面: - [Hugging Face Open LLM Leaderboard](https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard) [^1] 在该页面上,用户可以浏览不同模型的性能排名,并查看详细的评测结果和相关文档。 ### 示例代码:如何加载 Hugging Face 上的模型 以下是一个简单的 Python 示例,展示如何从 Hugging Face 加载一个预训练的 LLM 模型: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # 定义模型名称 model_name = "bigscience/bloom" # 加载 tokenizer 和模型 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 测试输入 input_text = "Hello, how are you?" inputs = tokenizer(input_text, return_tensors="pt") # 生成输出 outputs = model.generate(inputs["input_ids"], max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ###
        评论
        添加红包

        请填写红包祝福语或标题

        红包个数最小为10个

        红包金额最低5元

        当前余额3.43前往充值 >
        需支付:10.00
        成就一亿技术人!
        领取后你会自动成为博主和红包主的粉丝 规则
        hope_wisdom
        发出的红包
        实付
        使用余额支付
        点击重新获取
        扫码支付
        钱包余额 0

        抵扣说明:

        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

        余额充值