智能体(Agent)是一个具有智能的实体,能够感知环境、制定决策并采取行动以实现特定目标。一般具有记忆、规划、采取行为、使用工具等基本能力。智能体通常被设计成具有自主性和适应性,能够在不确定、复杂或动态的环境中做出决策以达成特定目标。
AI智能体最核心的特点:
- 学习能力:通过数据训练提升准确性。
- 交互能力:支持语音、文字、图像交互。
- 自主性:无需人类全程控制,可独立完成任务。
“
螺旋共生的
智能体与大模型
1.大模型赋能智能体
认知能力提升:大模型(如GPT、BERT等)为智能体提供语言理解、推理和生成能力,使其能够处理复杂任务。
决策优化:大模型通过分析海量数据,帮助智能体做出更精准的决策。
多模态支持:大模型整合文本、图像、语音等信息,增强智能体的多模态交互能力。
*2.智能体推动大模型进化*
数据反馈:智能体在实际应用中生成大量数据,为大模型提供训练和优化资源。
场景验证:智能体在真实场景中测试大模型,暴露其不足,推动改进。
需求驱动:智能体的多样化需求促使大模型向更高效、更通用的方向发展。
*3.螺旋共生的体现*
技术迭代:大模型与智能体相互促进,推动技术快速进步。
应用扩展:随着大模型能力提升,智能体应用场景不断扩展,进一步推动大模型优化。
生态共建:两者共同构建技术生态,吸引更多参与者,形成良性循环。
*4.集群智能体趋势*
近年来,基于 LLM 的智能体研究逐渐从单一智能体部署向自适应、协作式的多智能体系统和混合智能系统演进,其中人机混合智能体成为新的研究重点。多集群智能体(Multi-Agent Cluster)通过分布式架构与自主协作能力,正在重构人类社会的生产、协作与决策模式。其核心价值在于以群体智能弥补个体局限,同时与人类形成互补、竞争与共生的复杂关系。
智能体与人类共生,逐渐渗透进入到我们的日常生活已经是人类智能化生活的重要趋势之一。
图片来源:基于人智团队智能体协同进化的群智创新设计方法
“
智能体
主要分类
1.按体系结构与核心特性分类
认知型智能体:具备符号模型,能通过逻辑推理预测环境变化,支持多智能体协作与协商,具有记忆与策略评估能力(供应链优化、复杂任务规划)。
反应型智能体:基于“刺激-反应”规则,仅对当前环境状态做出快速响应,无长期记忆或规划能力(温控系统、工业传感器触发装置)。
**混合型智能体:**结合认知与反应型优势,既处理实时环境变化,又能通过有限推理优化决策(自动驾驶中的紧急避障系统)。
2.根据输入模态和技术实现分类
语言智能体: 仅使用HTML/XML等文本描述作为输入
视觉智能体: 仅使用屏幕截图作为输入
视觉-语言混合智能体: 同时使用屏幕截图和文本描述作为输入
*图片来源:*OS Agents: A Survey on MLLM-based Agents for Computer, Phone and Browser Use
“
**AI智能体
**
系统架构
基于大语言模型的AI Agent由三个部分组成,分别是感知端(Perception)、控制端(Brain)和行动端(Action)。
控制端: 处于核心地位,大脑模块承担记忆、思考以及决策制定等基础工作,
感知模块: 则负责接受和处理来自外部环境的多样化信息,如声音、文字、图像、位置等,
行动模块: 通过生成文本、API调用、使用工具等方式来执行任务以及改变环境。
“
智能体
功能点
1.*自动化与效率提升*
流程自动化 : 工业制造(自主控制生产线设备,完成装配、质检、包装等任务,减少人工干预);办公场景(自动处理邮件分类、数据录入、会议纪要生成等重复性工作;物流管理(优化仓储分拣路径、动态调度运输车辆,提升物流效率)。
智能客服与交互 : 通过自然语言处理(NLP)解答用户咨询,处理订单查询、故障报修等。
2.*智能决策与优化*
数据分析与预测:金融风控(分析市场数据识别欺诈交易,预测股票趋势辅助投资决策);
医疗诊断(结合患者病历和影像数据,辅助医生识别早期病变);能源管理(预测电网负荷,优化电力分配与储能策略)。
动态策略调整:自动驾驶(实时感知路况,规划避障路径并调整车速);游戏AI(控制NPC行为,根据玩家操作动态调整游戏难度与剧情分支)
3.*个性化服务与体验*
用户画像与推荐:电商推荐(基于浏览历史和购买行为,推送个性化商品);教育辅导(根据学习进度定制课程计划,推荐针对性练习题)
4.*多模态交互与感知*
环境感知与建模:智能家居(通过语音、手势控制家电,学习用户习惯自动调节环境);工业检测(利用视觉传感器识别产品缺陷)。
跨模态信息处理:内容生成(根据文本描述生成图像或视频);语音交互(支持多语言实时翻译,打破沟通壁垒)。
5.*自主学习与自适应*
持续学习与知识更新:大模型微调(在保护隐私的前提下更新模型);元学习(快速适应新任务)
资源调度:动态分配计算资源,优化云计算成本
6.*安全与风险管理*
威胁检测与防御:网络安全(实时监控网络流量,识别恶意攻击);工业安全(预测设备故障,避免停机损失)。
合规与隐私保护:数据脱敏(自动识别敏感信息并加密处理);计追踪(记录操作日志,确保符合行业规范)。
“
“智能体+”
产业应用变革
*1.智能体+金融*
效率提升与成本优化:智能流程自动化。通过RPA(机器人流程自动化)与智能体结合,实现信贷审批、报告生成等任务的自动化。
智能风控:多智能体协作分析交易数据,实时识别欺诈行为。
智能投研:DeepSeek大模型驱动的量化交易系统,通过实时分析新闻、财报和舆情,生成交易策略。
*2.智能体+能源行业*
多模态感知:集成气体检测、热成像等传感器,自然语言处理自动解析安全法规,生成检查清单。
智能地质数据分析:利用机器学习分析地震数据、地质构造和历史勘探数据,快速识别潜在油气藏,提高勘探成功率。
预测性维护:通过传感器监测设备(如泵、压缩机)的振动、温度等数据,提前预警故障,避免意外停产。
风险预测与应急响应:分析历史事故数据和实时环境参数(如气象、地质),预测井喷、火灾等风险并生成应急预案。
*3.智能体+医疗健康**
*
*多模态影像分析:智能体融合影像、病理、基因组等多维度数据,辅助医生识别早期病灶*
复杂病例决策支持:基于临床指南与真实世界数据,为疑难病症提供诊疗建议
智能导诊与分诊:自然语言处理(NLP)结合知识图谱,实现精准分诊。
全病程管理:从筛查、诊断到康复的全周期跟踪,动态调整干预方案。
“
开发和搭建AI智能体
主流平台有哪些
“
**智能体
**
未来趋势
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓