机器学习-支持向量机 -- 硬间隔SVM

-Q:将训练样本分开的超平面可能有很多, 哪一个好呢?

-A:应选择”正中间”, 容忍性好, 鲁棒性高, 泛化能力最强.

2. Hard-margin SVM


****输入空间:****欧几里德空间或离散集(Euclidean space or discrete set)

****输出空间:****欧几里得空间或希尔伯特空间(Euclidean space or Hilbert space)内积空间

****假设:****输入空间的实例可以映射到特征空间中的特征向量。(一对一)。学习是在特征空间中进行的

训练数据集:

****目标:****找到一个超平面 wx + b = 0   (w,b为参数)

****思路:****间隔最大(maximum margin)

     

线性支持向量机SVM:

3. 函数间隔 VS 几何间隔<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值