-Q:将训练样本分开的超平面可能有很多, 哪一个好呢?
-A:应选择”正中间”, 容忍性好, 鲁棒性高, 泛化能力最强.
2. Hard-margin SVM
****输入空间:****欧几里德空间或离散集(Euclidean space or discrete set)
****输出空间:****欧几里得空间或希尔伯特空间(Euclidean space or Hilbert space)内积空间
****假设:****输入空间的实例可以映射到特征空间中的特征向量。(一对一)。学习是在特征空间中进行的
训练数据集:
****目标:****找到一个超平面 wx + b = 0 (w,b为参数)
****思路:****间隔最大(maximum margin)
线性支持向量机SVM:
3. 函数间隔 VS 几何间隔<