爆爆爆!李飞飞的World Labs居然融资2.3亿美元!
要知道,这个被称为"世界模型"的技术,正在成为AI界的新风口。
谷歌、英伟达、OpenAI这些巨头都在疯狂投入,生怕错过下一个技术革命的窗口期——它不只是个技术概念,更像是AI通往真正智能的"任督二脉"。
1、什么是世界模型
世界模型类似于真正的人类大脑,通过学习现实世界中的物理和因果规律,具备“物理直觉”,可在内部模拟环境变化,基于当前环境状态推演未来状态,并评估自身行为的后果。
这一概念源于心理学中的“心智模型”。
举个例子:
看到乌云密布时,人们会自然地预判“快要下雨了”,因为大脑已经在内部模拟了可能的天气变化。
2、世界模型VS大模型
大模型(如 GPT、DeepSeek 等)依赖海量数据进行统计学习与模式匹配,其能力本质上基于相关性而非因果性,因而缺乏对物理世界的真实理解,也难以进行可解释的推理。
部分研究者认为:若希望 AI 具备类人智能,不能仅依赖数据驱动的模式匹配,真正的智能应包含对物理规律的建模能力以及对环境变化的内部模拟机制。
当前关于世界模型的研究主要有两种观点:
大模型派: 坚信“Scaling Law(规模定律)”,认为只要模型规模足够大,各种能力将自然涌现,可成为世界模型。
世界模型派: 认为再大的模型本质上也只是更聪明的“鹦鹉”,真正的智能须建立在对物理世界理解和因果关系把握的基础之上。图灵奖得主 Yann LeCun 就是这一观点的坚定支持者。
3、世界模型如何工作?
世界模型让 AI 拥有“脑内模拟”的能力,能够在不与真实环境交互的情况下推演未来。通常包含以下模块:
感知与编码
通过摄像头、雷达等传感器获取图像等环境数据,并利用VAE(变分自编码器)等方法将其压缩为潜在向量,以提取关键信息并降低计算负担。
动态推演
在潜在空间中模拟环境随时间和动作变化的过程,实现: 当前状态 + 动作 → 未来状态。该模块相当于一个“脑内环境模拟器”,可推演多种可能情境。
控制决策
根据推演结果选择合理行为,例如加速、转向或避障。常与强化学习策略结合,以提升决策效果。
比较知名的世界模型架构包括 DeepMind 的 Dreamer 系列、LeCun 提出的 JEPA 等。
4、典型应用场景
世界模型虽仍处于发展初期,但已在以下领域展现潜力:
自动驾驶
如特斯拉的通用世界模型、蔚来世界模型 NWM,通过环境建模与状态推演,提升自动驾驶中路径规划、避障与决策能力。
机器人控制
世界模型可作为“脑内模拟器”,帮助机器人在复杂环境中预演行动结果,提高决策效率与可靠性。
特别是在具身智能中,世界模型常被视为比语言模型更适合担任机器人的“决策中枢”。
游戏与科研仿真
用于推演角色行为、物体轨迹,以及模拟蛋白质折叠、粒子运动等复杂过程,提升交互智能与模拟效率。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】